
CSE 190 / Math 152 - Introduction to Quantum Computing
Homework 3
Due Tuesday, April 23rd, 1:30pm

Instructions: You may work individually or in a team of 2 people. You may switch
teams for different assignments. Please ensure your name(s) and PID(s) are clearly visible
on the first page of your submission, and then upload the PDF to Gradescope. If working
in a group, submit only one submission per group: one partner uploads the submission
through their Gradescope account and then adds the other group member to the Gradescope
submission by selecting their name in the “Add Group Members” dialog box. You will need
to re-add your group member every time you resubmit a new version of your assignment.

It is highly recommended (though not required) that you type your answers. It is your
responsibility to make any handwriting clear and legible for grading. A LaTeX template for
the homework is provided on Canvas.

We will only be grading some of the problems below for correctness. However, because
all of the concepts are important, we will not reveal which problems are being graded for
correctness until after the assignment has been submitted. The remaining problems will
be graded for completeness (i.e., does it look like there was a good-faith effort to solve the
problem?).
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Problems:

1. No-Cloning Theorem with junk

In class, we proved the following theorem: There is no two-qubit unitary U for which

U(|ψ⟩ ⊗ |0⟩) = |ψ⟩ ⊗ |ψ⟩

for all single-qubit states |ψ⟩. However, this is not the only possible definition of a
cloning unitary. For example, we might have a 3-qubit cloning unitary U such that

U(|ψ⟩ ⊗ |0⟩ ⊗ |0⟩) = |ψ⟩ ⊗ |ψ⟩ ⊗ |junk(ψ)⟩

for all single-qubit states |ψ⟩ and some arbitary state |junk(ψ)⟩ that depends on the
cloned state |ψ⟩. In other words, in this setting, the unitary copies the first qubit into
the second qubit, but also produces some arbitrary state in the third qubit. One can
check that the exact proof outline we saw in class for the original No-Cloning Theorem
no longer works, so let’s try something else.

Suppose there exists such a cloner with junk U . Recall that |+⟩ := |0⟩+|1⟩√
2

. We can use
the definition of the cloner U to show that

U(|+⟩ ⊗ |0⟩ ⊗ |0⟩) = |+⟩ ⊗ |+⟩ ⊗ |junk(+)⟩ . (1)

Alternatively, we can write U(|+⟩ ⊗ |0⟩ ⊗ |0⟩) using the linearity of matrix-vector
multiplication as

U

((
|0⟩+ |1⟩√

2

)
⊗ |00⟩

)
= U

(
|000⟩+ |100⟩√

2

)
=

1√
2
(U |000⟩+ U |100⟩) (2)

Using the definition of the cloner U on states |000⟩ and |100⟩, show that the state
derived in Equation (1) is different from the state in Equation (2). Conclude that
cloning states with junk is impossible. (Note: You need to prove that the two states
are different.)
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2. Circuit building

In this problem, you will practice building a quantum circuit for a quantum state. For
example, the circuit which constructs the state |00⟩+|11⟩√

2
is the following:

|0⟩ H

|0⟩

Some of you may find it useful to play around with quantum circuits in the Qiskit SDK.
Information on how to install Qiskit is here with tutorials here. To do simulations of
quantum circuits on your classical computer, you will also need the Aer library, which
can be installed using the Python package manager using the command pip install

qiskit-aer. The Python code below prints the state vector associated with the circuit
above:

from qiskit_aer import Aer

from qiskit import QuantumCircuit

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

backend = Aer.get_backend("statevector_simulator")

print(backend.run(qc).result ().get_statevector ())

For each of the following quantum states, draw a quantum circuit which constructs it.
Assume that all qubits are initialized to |0⟩. The circuit above was drawn in LaTeX
using the quantikz package, but it is also fine to draw the circuit by hand. You may
use the following single-qubit gates:

H =
1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, S =

(
1 0
0 i

)
, RY =

1√
3

(
1 −

√
2√

2 1

)
In Qiskit, the final gate is RYGate(1.91063) where the angle of rotation comes from
the fact that 2 arcsin(

√
2/3) ≈ 1.91063. You are also allowed to use the singly or

doubly controlled versions of the gates above. Recall that controlled-X is the CNOT
gate and controlled-controlled-X is the Toffoli gate.

(a) |000⟩+|111⟩√
2

(b) |00⟩+i|01⟩+|10⟩+i|11⟩
2

(c) |011⟩+|101⟩+|110⟩√
3

.
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https://docs.quantum.ibm.com/start/install
https://docs.quantum.ibm.com/build
https://qiskit.github.io/qiskit-aer/
https://pip.pypa.io/en/stable/installation/
https://arxiv.org/pdf/1809.03842.pdf


3. The Clifford circuits are not universal

The quantum operations that can be built using circuits of Hadamard (H), Phase (S),
and CNOT gates are called the Clifford operations. While the Clifford operations are
extremely important in quantum computation (we will see many uses in this class), it
turns out they they also are very limited. We say that a set of gates is exactly universal
for a set of unitary operations if for every unitary in the set, there is a quantum circuit
which constructs it up to a complex scalar factor of magnitude 1.

For example, Clifford circuits are exactly universal for the set containing the single
unitary 1√

2

( −1 −1
−i i

)
since the circuit

H S

constructs the unitary up to a −1 scalar factor—that is, SH = 1√
2
( 1 1
i −i ).

(a) Show that Clifford circuits are exactly universal for the Pauli operators:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
Hint: Multiply two of the matrices above. What do you get? Also, use the identity
that you proved in the previous homework: HZH = X.

(b) Show that the Clifford circuits are not exactly universal for the set of all two-qubit
unitary operations. Correctness will be judged based on whether or not you have
the right idea even if your proof isn’t entirely formal.

Hint: Show that each entry of the unitary matrix of a Clifford circuit has a special
form. Since the entries of an arbitrary unitary matrix do not have that form, reach
the conclusion.
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