CSE 190 / Math 152 - Introduction to Quantum Computing
Homework 5
Due Tuesday, May 21st, 1:30pm

Instructions: You may work individually or in a team of 2 people. You may switch
teams for different assignments. Please ensure your name(s) and PID(s) are clearly visible
on the first page of your submission, and then upload the PDF to Gradescope. If working
in a group, submit only one submission per group: one partner uploads the submission
through their Gradescope account and then adds the other group member to the Gradescope
submission by selecting their name in the “Add Group Members” dialog box. You will need
to re-add your group member every time you resubmit a new version of your assignment.

It is highly recommended (though not required) that you type your answers. It is your
responsibility to make any handwriting clear and legible for grading. A LaTeX template for
the homework is provided on Canvas.

We will only be grading some of the problems below for correctness. However, because
all of the concepts are important, we will not reveal which problems are being graded for
correctness until after the assignment has been submitted. The remaining problems will
be graded for completeness (i.e., does it look like there was a good-faith effort to solve the
problem?).

Problems:

In this class, our goal has always been to show there’s some problem that a quantum
computer can solve efficiently that looks out of reach for classical computers. But, is it
possible that the reverse is also true? That is, is there a problem that a classical computer
could solve efficiently that cannot be solved efficiently with a quantum computer? In this
problem, we will show that the answer is “no”.

First, let’s explore why the answer might be “yes”. Namely, a classical circuit has access
to gates that do not need to be unitary. A classical gate g: {0,1}° — {0, 1} is just a Boolean
function which maps ¢ bits to 1 bit. For example, the classical AND gate is the 2-input gate
such that the output bit is 1 if and only if both of the input bits are also 1:

AND(0,0) =0; AND(0,1) =0; AND(1,0)=0; AND(1,1)=1

¢

The OR gate is 1 when either of the input bits is 1:
OR(0,0) =0; OR(0,1)=1; OR(1,0)=1; OR(1,1)=1
Another important gate is the NOT gate, which simply flips the value of the input bit:
NOT(0)=1; NOT(1)=0

We can build classical circuits for other Boolean functions f: {0,1}" — {0, 1} out of classical
gates by creating a network of gates, where the output of a gate can be fed as input to another.
Much like with quantum circuits, it can be easiest to describe a classical circuit through some
sort of visualization. Pictorially, we can draw the AND, OR, and NOT gates as follows:

AND OR NOT

=D = >— —>—

Each gate has the inputs coming in from the left and the outputs leaving from the right. To
see an example of a classical circuit, let’s consider the XOR function, which sums the input
bits mod 2:

XOR(0,0) =0; XOR(0,1)=1; XOR(1,0)=1; XOR(1,1)=0

A classical circuit for XOR is shown below:

T
——

Notice that one key feature of the circuit above (and classical circuits in general) is that
wires can be “split” or “copied” so that the value of one wire in the circuit can be fed into
multiple gates.

Although it’s outside the scope of this course, it will turn out that classical circuits
completely capture the power of classical computation in the same way that quantum circuits
completely capture the power of quantum computation.

1. Let’s prove one aspect of this characterization, namely, that there are classical circuits
for any Boolean function f: {0,1}" — {0,1}. We break this down into the following
steps:

(a)

Show there is a classical circuit consisting only of 2-input AND gates that can
compute that n-input AND gate. Formally, the function AND,,: {0,1}" — {0, 1}
we are trying to compute has the behavior

1 lf.fElzil?Q::.fEn:l
ANDn(@1, 2, .,) = {O otherwise

for all inputs x,2,...,2, € {0,1}. You can describe your circuit for AND,, in
words, or you can draw a sketch of what the circuit would look like.

Notice that we can now use AND,, gates in our circuit constructions since we’ve
shown how to construct them from 2-input AND gates in part (a). Show that
using one AND,, gate and some NOT gates, we can construct the OR,, function:

ORn($17w27 s 7$n) =

0 ifey=29=--=2,=0
1 otherwise

for all inputs x1, 2, ..., x, € {0,1}.

Suppose the function f: {0,1}" — {0,1} we are trying to compute only has a
single input y = (y1,...,y,) for which f(y) = 1. Show there is a classical circuit
consisting of AND,, gates and NOT gates that computes f.

Combining all of the above, show that there is a classical circuit consisting of
AND and NOT gates for every Boolean function f: {0,1}" — {0, 1}.

2

Our goal will now be to show that for every Boolean function f: {0,1}" — {0, 1}, there
is a quantum circuit which implements the oracle Oy:

Oy |z) b) = |} [f(2) © b)

for all z € {0,1}" and b € {0,1}. Moreover, we want this construction to be efficient—if
there is a classical circuit which computes f with few gates, then there is also a quantum
circuit which computes O; with few gates.

2.

(a) Let’s first tackle the issue that classical circuits can “split” wires, whereas quan-
tum circuits cannot. Here, we will use the fact that we are only dealing with
classical bit strings, so we can copy the classical bit value into another ancilla
register if we want to use it another time. Show there is a quantum circuit which
implements the following “copy” operation:

COPY [z) [0) = |z} |x)

for all x € {0,1}. What basic quantum gate implements this operation?

(b) Show there is a quantum circuit which implements the NOT operation:
NOT |z) = |z @ 1)

for all x € {0,1}. What basic quantum gate does this operation correspond to?

(¢) To implement the AND gate, we need to be more careful, since it’s the first gate
we’ve encountered which is not reversible. We will need to use some additonal
registers to force the AND operation to be reversible. Show there is a quantum
circuit which implements the following reversible AND operation:

REVERSIBLE-AND |z) |y) |0) = |z) |y) |AND(z,y))

for all z,y € {0,1}. What basic quantum gate implements this operation?

(d) Suppose there is a classical circuit with 2-input AND gates and NOT gates which
computes some Boolean function f: {0,1}" — {0,1}. Combining all of the above,
show there is a quantum circuit which implements the following unitary:

Jrlx) 10)[0---0) = [z) | f(2) @ b) [junk(z))

for all x € {0,1}™ and b € {0,1}. Here, junk(z) is some classical bit string which
depends on .

This junk can be quite annoying if you want to implement f in superposition:

) \/127 Y. la)b)o---0) 2\/127 Y [2)|f(z) @) |junk(x))

ze{0,1}n ze{0,1}"

The junk acts like an unwanted quantum gate. To get some intuition for how the junk
can destroy the careful superposition of our state, we will look at a small example.

3

(e)

Let f: {0,1} — {0, 1} be the constant-0 function (i.e., f(0) = f(1) = 0). Consider
the following circuit:

o T HI-F

0) Jy

Show that the probability distribution of the partial measurement is different in
the following two cases:

e junk(0) = 0 and junk(1l) = 1; and
e junk(0) = 0 and junk(1l) = 0.

To get around this issue we must “uncompute” the junk state, mapping it back to the
all-zeros state.

(f)

Notice that if we apply J; and then J}L, we will have reset the junk register, but we
will have also reset the function register, which we don’t want to do. Modify this
idea slightly to obtain a complete description of a circuit that computes Oy using
Jy, J}, COPY, NOT, and REVERSIBLE-AND gates. Hint: You are allowed to
troduce a new ancilla register.

Suppose there is a classical circuit with k4 2-input AND gates and ky NOT
gates which computes some Boolean function f: {0,1}" — {0,1}. Write down,
in terms of k4 and ky, the number of gates needed to implement Oy in a quantum
circuit. You are allowed to use the COPY, NOT, and REVERSIBLE-AND gates.
Conclude by noticing that if f can be implemented efficiently by a classical circuit,
then O can be implemented with just a constant factor overhead by a quantum
circuit.

