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Lecture 15 - Phase Estimation Exercise

Question

Let U be a single-qubit unitary with (unknown) eigenstates |ψ+⟩ and |ψ−⟩ with eigenvalues +1 and −1,
respectively:

U |ψ+⟩ = |ψ+⟩
U |ψ−⟩ = − |ψ−⟩

Suppose we can apply controlled-U , but otherwise cannot see the exact matrix representation of U . Design
a quantum algorithm which generates an eigenstate of U at random (not necessarily uniformly at random).

Approach

This problem looks similar to the setup of phase estimation, so let’s first recall that setting:

Phase Estimation

Setup: Unitary U with eigenstate |ψ⟩ with eigenvalue e2πiθ

Input: Unitary Λm(U) such that

Λm(U)(|k⟩ ⊗ |φ⟩) = |k⟩ ⊗ Uk |φ⟩

for all states |φ⟩ and all integers k ∈ {1, 2, . . . , 2m − 1} written in binary using m bits.

Output: Approximation θ̃ of θ with high probability:

|θ̃ − θ| ≤ 1

2m+1

As a special case, when θ = j/2m for some integer j ∈ {0, . . . , 2m − 1}, the phase estimation
circuit outputs j with certainty (hence, can determine eigenvalue exactly).

We need to massage the input of the question to fit the setting of phase estimation.

Claim 1. Controlled-U is the same operation as Λm(U) for m = 1.

Proof. Notice that when m = 1, we can only use 1 bit to represent the integer k in the definition of Λm(U).
Therefore, there are only two cases to consider k = 0 and k = 1, which are (conveniently) the same written
in binary:

Λ1(U)(|0⟩ ⊗ |φ⟩) = |0⟩ ⊗ |φ⟩
Λ1(U)(|1⟩ ⊗ |φ⟩) = |1⟩ ⊗ U |φ⟩

In other words, when k = 0, we do nothing, and when k = 1 we apply U . This is the exact definition of
controlled-U .

Now let’s turn to the representation of the eigenvalues +1 and −1 as numbers on the complex unit circle,
i.e., e2πiθ for some value of θ. It will turn out that we can represent these numbers with a θ which is exactly
j/2 for some integer j, so phase estimation is exact.
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Claim 2. e2πi(j/2) is 1 when j = 0 and −1 when j = 1.

Proof. Follows from the fact that e0 = 1 and eiπ = −1.

We are ready to apply the phase estimation circuit Q, which looks like the following in the case of m = 1:

H QFT−1
2

U

By the input/output behavior of phase estimation, we have that

Q |0⟩ |ψ+⟩ = |0⟩ |ψ+⟩ (1)

Q |0⟩ |ψ−⟩ = |1⟩ |ψ−⟩ (2)

In other words, when we apply the phase estimation algorithm the first qubit flags whether or not the state
of the second register is the +1 eigenstate or the −1 eigenstate. It will be useful to be able to do these kinds
of calculations using the properties of phase estimation, but for such a simple setting, we can verify these
equations explicitly. The key to do so is to recall that QFT2 is just single-qubit Hadamard, which implies
that QFT−1

2 is also Hadamard. That is, the circuit for the equations above becomes

|0⟩ H H

|ψ⟩ U

where |ψ⟩ is one of |ψ+⟩ or |ψ−⟩. For |ψ+⟩, we get

|0⟩ |ψ+⟩
H⊗I−−−→ |0⟩ |ψ+⟩+ |1⟩ |ψ+⟩√

2

C-U−−−→ |0⟩ |ψ+⟩+ |1⟩U |ψ+⟩√
2

=
|0⟩ |ψ+⟩+ |1⟩ |ψ+⟩√

2
= |+⟩ |ψ+⟩

H⊗I−−−→ |0⟩ |ψ+⟩

and for |ψ−⟩, we get

|0⟩ |ψ−⟩
H⊗I−−−→ |0⟩ |ψ−⟩+ |1⟩ |ψ−⟩√

2

C-U−−−→ |0⟩ |ψ−⟩+ |1⟩U |ψ−⟩√
2

=
|0⟩ |ψ−⟩ − |1⟩ |ψ−⟩√

2
= |−⟩ |ψ−⟩

H⊗I−−−→ |1⟩ |ψ−⟩

As expected, these calculations agree with equations (1) and (2) above.
These calculations were done assuming we had access to an eigenstate of U . Clearly, however, we can’t

use that information since that’s what we were supposed to generate in the first place. The trick will be to
use the fact that |ψ+⟩ and |ψ−⟩ form a basis:

Fact 3. Let U be an m-qubit unitary with distinct eigenvalues. U has exactly 2m orthonormal eigenstates
|ψ1⟩ , |ψ2⟩ , . . . , |ψ2m⟩. Therefore, these eigenstates form a basis for all m-qubit states.

Using the fact, we can take any state, say |0⟩ and write it in the eigenstate basis:

|0⟩ = α |ψ+⟩+ β |ψ−⟩

where α, β are complex amplitudes. It’s worth emphasizing that because we don’t know the eigenstates, we
also don’t know the amplitudes α and β, but that will be okay to solve the problem. Now, when we apply
the phase estimation circuit Q using |0⟩ in the usual place of the eigenstate, we get

Q |0⟩ |0⟩ = Q |0⟩ (α |ψ+⟩+ β |ψ−⟩) = αQ |0⟩ |ψ+⟩+ βQ |0⟩ |ψ−⟩ = α |0⟩ |ψ+⟩+ β |1⟩ |ψ−⟩

where in the last line we are once again using equations (1) and (2). To complete the problem, simply
measure the first register. We get outcome 0 with probability |α|2 and outcome 1 with probability |β|2.
Importantly, when we measure 0, the eigenstate |ψ+⟩ is in the second register, and when we measure 1, the
eigenstate |ψ−⟩ is in the second register. In other words, we have prepared eigenstate |ψ+⟩ with probability
|α|2 and the eigenstate |ψ−⟩ with probability |β|2. To generate, each state uniformly at random we could
have started with a random state |φ⟩ (from something called the Haar measure) instead of the state |0⟩.
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