
CSE 190 / Math 152 - Introduction to Quantum Computing
Homework 6
Due Friday, June 6, 11:59pm

Instructions: There are essentially 4 parts to this homework:

1. Concept Check : Must be completed individually

2. Survey of student learning in quantum computing : See details on Canvas. Must be
completed individually

3. Normal written homework : Can be completed individually or in a team of 2 people.
There are only two questions: 3(a) and 3(b)

4. Optional written homework : The remainder of problem 3 is optional and will not be
graded. It uses a technique call phase estimation which we have not covered in class
(nor will it appear on the final).

Problems:

1. Concept check

Complete the assignment “Homework 6 - Concept Check” on Gradescope.

Must be completed individually even if working in a team for the rest of the assignment.

2. Survey of student learning in quantum computing

Survey linked on Canvas as an announcement (the link is private to this class).

Must be completed individually even if working in a team for the rest of the assignment.

3. Counting solutions with Grover’s algorithm and Phase Estimation

In class, we gave a quantum algorithm for the following “search” problem:

Input: Query access to a function f : {0, 1}n → {0, 1}
Output: Bit string x ∈ {0, 1}n such that f(x) = 1 (or report none exists)

In particular, we showed that Grover’s algorithm uses roughly
√
2n queries to the oracle

Of whereas any classical algorithm requires 2n queries to f . In this problem, we will
explore the “counting” version of this problem:

Input: Query access to a function f : {0, 1}n → {0, 1}
Output: Approximate number of x ∈ {0, 1}n such that f(x) = 1

This problem seems to be a lot harder than the search problem since intuitively you need
find all inputs for which f evaluates to 1, not just a single input. Nevertheless, we will
show that there is a quantum algorithm that combines the ideas in Grover’s algorithm
with phase estimation to solve this problem. It may be helpful to review the analysis of
Grover’s algorithm before working on this problem, but we will reintroduce some of the
major components.
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Let M and U be the sets of “marked” and “unmarked” inputs, respectively. That is,

M = {x ∈ {0, 1}n | f(x) = 1} and U = {x ∈ {0, 1}n | f(x) = 0}.

As in the analysis of Grover’s algorithm, we will consider a 2-dimensional space spanned
by the uniform superposition of marked and unmarked items:

|s⟩ := 1√
|M|

∑
x∈M

|x⟩ and, |Ψ⟩ := 1√
|U|

∑
x∈U

|x⟩

Once again, we will start the quantum algorithm in the state

|u⟩ := H⊗n |0n⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩ .

(a) Show that |u⟩ =
√

|M|
2n

|s⟩+
√

1− |M|
2n

|Ψ⟩.

For now, let’s consider the same operations—the phase oracle Of , and the Grover diffusion
operator D—that we used in Grover’s algorithm:

Of |x⟩ = (−1)f(x) |x⟩ , and D |x⟩ = 2 ⟨u|x⟩ |u⟩ − |x⟩

for all x ∈ {0, 1}n. It will be useful to once again think of Of and D as reflections in
the space spanned by |s⟩ and |Ψ⟩. The axis of reflection for each operation is shown in
red in the figures below. The first figure shows Of applied to |u⟩ (the initial state of our
algorithm), and the second figure shows D applied to Of |u⟩:

|Ψ⟩

|s⟩

|u⟩
θ0
θ0

Of |Ψ⟩

|s⟩

Of |u⟩

θ0
2θ0

θ0

D

If we compose the two operations (i.e., DOf ) and apply them to any arbitrary state |φ⟩,
we simply get a rotation in this space of 2θ0, where θ0 is the initial angle between |u⟩ and
|Ψ⟩:
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|Ψ⟩

|s⟩

|φ⟩
2θ0

θ

DOf

Let’s get some concrete practice with this rotation.

(b) Compute the amplitude on |s⟩ after one Grover iteration. In other words, compute
⟨s|DOf |u⟩. Make sure to check that your answer makes sense. The initial amplitude

on |s⟩ is
√

|M|/2n. Using the small-angle approximation, this implies that θ0 ≈√
|M|/2n.

** THE REMAINDER OF THIS HOMEWORK IS ENTIRELY OPTIONAL AND
WILL NOT BE GRADED **

We’ve concluded thatDOf is a rotation by 2θ0. Since θ0 ≈
√

|M|/2n, we can approximate
|M| if we know the value of θ0: |M| ≈ 2nθ20. Therefore, to solve the counting problem,
our plan will be to determine θ0. We will use phase estimation to do this, so let’s review
the setting of that algorithm. First, recall that for any unitary U , we define Λm(U) to be
the unitary that has the following behavior:

Λm(U)(|k⟩ ⊗ |x⟩) = |k⟩ ⊗ Uk |x⟩

for all x ∈ {0, 1}n and all integers k represented in binary usingm bits. The phase estima-
tion algorithm outputs an approximation of the eigenvalue of a unitary U corresponding
to a given eigenstate:

Input: Unitary Λm(U), eigenstate |ψ⟩ such that U |ψ⟩ = e2πiθ |ψ⟩
Output: Approximate value of θ ∈ [0, 1)

Our goal will be to use phase estimation on DOf . Here, we can see that to use phase
estimation, we must depart from the original Grover setting where we only required query
access to Of . For now, let’s assume we also have access to Λm(DOf ).

To finish the algorithm, we must show how the eigenvalues of DOf are related to θ0. For
this, we once again appeal to the geometric interpretation of DOf as a rotation by 2θ0 in
the space spanned by |s⟩ and |Ψ⟩. We will use that rotations in this space correspond to
the rotation matrix

R(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.
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For DOf , specifically, we have shown that ϕ = 2θ0. Since the eigenvalues of R(ϕ) are
e±iϕ, the non-zero eigenvalues of DOf should be e±2iθ0 . Let’s check this directly. To do
this, we will need the following expressions:

sin θ0 = ⟨u|s⟩ =
√
|M|/2n

cos θ0 = ⟨u|Ψ⟩ =
√

1− |M|/2n

which can be derived by referring back to the figures and using some standard trigono-
metric identities.

(c) Show that DOf has eigenstate |s⟩+i|Ψ⟩√
2

with eigenvalue e2iθ0 .

This is an involved calculation. Here is a rough outline if you get stuck: start with
the state (|s⟩ + i |Ψ⟩)/

√
2 and apply the operators Of and D. In particular, the

application of D will lead to a state which has a component of |u⟩. But notice by
part (a), we can expand |u⟩ back in the {|s⟩ , |Ψ⟩} basis. Furthermore, the coefficients
of that expansion can be represented as sin θ0 and cos θ0 using the equations above. To
complete the calculation, you will have to reason about how the resulting expression
simplifies using some standard trig identities—for example, depending on how you
do the calculation you may need the double angle formulas

sin(2x) = 2 sinx cosx,

cos(2x) = 1− 2 sin2 x = 2 cos2 x− 1

as well as Euler’s formula: eix = cosx+ i sinx.

A nearly identical calculation will show that |s⟩−i|Ψ⟩√
2

is an eigenstate of DOf with eigen-

value e−2iθ0 . To recap, we’ve shown that DOf has eigenvalues e±2iθ0 , which can be written
as

e2πi(
θ0
π
) or e2πi(1−

θ0
π
)

so using phase estimation we should be able to obtain an estimate to θ0/π or (1− θ0/π),
which we can use to estimate θ0 and ultimately |M|. There’s one catch—we don’t actually
have access to the eigenstates of DOf . We computed the eigenstates in part (c) from the
states |s⟩ and |Ψ⟩, but we don’t actually know what the states are (we’re only assuming
that we know them in the analysis). As it turns out, we don’t need to!

Our plan will be to run phase estimation on the state |u⟩, which can be written as a
superposition of eigenstates. In this way, the phase estimation algorithm will learn either
θ0/π or (1 − θ0/π). We can’t control which one we learn, but it also doesn’t matter—
either one suffices to estimate θ0. Let’s do the analysis, first giving some names to the
eigenstates:

|φ+⟩ :=
|s⟩+ i |Ψ⟩√

2
and |φ−⟩ :=

|s⟩ − i |Ψ⟩√
2

.

(d) Claim: |u⟩ = α |φ+⟩+ β |φ−⟩ for complex amplitudes α, β. Compute α and β.

Putting everything together, we have the following circuit for quantum counting:
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|0m⟩ H⊗m

Λm(DOf )

QFT−1
2m

|0n⟩ H⊗n

(e) Assume that θ0/π = j/2m for some positive integer j < 2m. Using the α and β you
computed in part (d), show that the measurement returns j with probability |α|2
and returns 2m − j with probability |β|2. Hint: It might be helpful to first revisit the
standard analysis of the phase estimation algorithm.

There’s one final aspect of this algorithm we need to consider. Grover’s algorithm used
roughly 2n/2 queries to Of , so how many queries did our algorithm use? In some sense,
it feels like the answer is just “1” since the quantum phase estimation circuit we built
only has a single call to the unitary Λm(DOf ). Since the counting problem is harder than
the search problem, Λm(DOf ) is clearly very powerful. Unfortunately, Λm(DOf ) does
not properly capture the complexity of implementing phase estimation in practice—if we
have an efficient circuit for Of we might not have an efficient circuit for Λm(DOf ).

To more accurately capture the difficulty of constructing the unitary Λm(DOf ), we will
count how many controlled-Of gates we need in order to implement it. For most practical
problems, the difference in cost of implementing controlled-Of and Of is small, so this is
a reasonable gate to allow ourselves. One can show how to implement Λm(DOf ) using
roughly 2m controlled-Of gates (Bonus exercise: prove this).

Therefore, to determine the query complexity of counting, we need to determine how
large m needs to be to accurately estimate θ0. In part (e), we were able to compute
the phase exactly (and therefore θ0 exactly); however, in general, phase estimation may
have some 1/2m error. In other words, if the phase estimation procedure returns some
approximation E ∈ R for the phase θ/π, then the only guarantee is that

|E − θ0/π| ≤
1

2m
.

Let’s investigate how this error affects the number of queries needed for counting. We’ve
argued before that θ0 ≈

√
|M|/2n, but for simplicity, let’s just assume that they are

exactly equal: θ0 =
√

|M|/2n. Furthermore, let’s make a simplifying assumption that
the phase estimation algorithm returns an estimate E to θ0/π (the analysis will be iden-
tical if the phase estimation procedure returns an estimate to 1 − θ0/π). Since E is an
approximation of θ0/π, then 2nπ2E2 should be an approximation of |M|.

(f) Using the error bound on E, show the following error bound on 2nπ2E2:

|2nπ2E2 − |M|| ≤ 2π

√
2n|M|
2m

+ π2 2n

22m

(g) Using the bound from part (f), determine what value of m is required to obtain a
multiplicative ϵ-approximation of |M|. In other words, we want

|2nπ2E2 − |M|| ≤ ϵ|M|
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Express the value of m in terms of n, ϵ, and |M|, and show that it gives the desired
inequality above. Show that your answer implies that the total number of quantum
queries used in the algorithm is (up to a constant factor) 1

ϵ

√
2n/|M|. It may help to

assume that ϵ = 1/2a for some positive integer a. This can affect the final solution
by at most a factor of 2.

As a final remark, notice that your bound on m in part (g) depended on |M|. This
looks somewhat weird—we are trying to estimate |M|, so we can’t know it ahead of
time. However, there is a trick where we can guess that |M| = 2n, 2n−1, 2n−2, . . . to
sneak up on the right answer. The analysis of that trick is slightly involved, so we
won’t go into it.
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