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Lecture 10

Lecturer: Daniel Grier Scribe: Philip Lamkin

1 Warmup

Recall the collision problem from Lecture 8:

Collision:
Oracle: f : {0, 1}n → {0, 1}n
Goal: Promised that f is 1-to-1 or 2-to-1, decide which

Fact 1. Suppose f is 2-to-1. Then for randomly chosen A,B ⊆ {0, 1}n with |A||B| = 2n there is a constant
probability that ∃a ∈ A, b ∈ B with f(a) = f(b).

Theorem 2 (Brassard, Høyer, and Tapp [BHT97]). The quantum query complexity of Collision is O(2n/3).

Proof. Pick a random A of size 2n/3 and B (disjoint from A) of size 22n/3. First query each element of
A, which takes 2n/3 queries. With this, construct the (single query) function g(x) which returns true if
there is a ∈ A with f(x) = f(a). Now run Grover’s algorithm on B, to see if g is ever true. This takes

O(
√
22n/3) = O(2n/3) queries.

If f is 2-to-1, then there is a constant probability this algorithm returns true. By iterating a sufficient
constant number of times, we can get the probability to be at least 2/3 that we find at least one success.
If f is 1-to-1, g will always be the constant 0 function. Therefore we run Grover’s algorithm a constant
number of times, and return true if Grover’s ever accepted, and otherwise returns false. This algorithm
solves Collision with O(2n/3) queries.

2 BVVV lower bound for Grover

Recall where we left last time, with two states |ϕ⟩ and |ψ⟩ such that ∥|ϕ⟩− |ψ⟩∥2 ≤ T√
2n

, where T is the total

number of queries we made, and |ϕ⟩ and |ψ⟩ are the states corresponding to running our proposed algorithm
on the all 0’s string versus the string that has one (carefully chosen) 1.

In other words, if T is not sufficiently large, then the two potential states are extremely close to each
other (in ℓ2 distance). We want to show that if they are close together in ℓ2 distance, then all measurement
procedures fail to distinguish them with high probability. To formalize this, let us define the total variation
distance between two discrete probability distributions p, q:

TV(p, q) =
1

2
∥p− q∥1 =

1

2

∑
i

|pi − qi|.

The total variation distance is important because it determines the maximum probability with which we can
distinguish two probability distributions. That is, suppose with 50% probability we sample from p and with
50% probability we sample from q, the maximum probability with which we can guess which distribution
was sampled from is 1/2 + TV(p, q)/2.

Lemma 3. If ∥|ϕ⟩ − |ψ⟩∥2 < ϵ, then the total variation distance from measuring |ϕ⟩ and |ψ⟩ is at most 2ϵ.

Proof. Suppose |ϕ⟩ =
∑
αx |x⟩, |ψ⟩ =

∑
βx |x⟩. For ease of notation, assume αx, βx are all reals, though the

proof still works if we allow them to be complex. Let γx = βx − αx. Now we write

∥|ϕ⟩ − |ψ⟩∥2 =

√∑
x

γ2x ≤ ϵ.
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Let p, q be the distributions of measuring ϕ, ψ respectively. Then, we have that twice of their total
variation distance is given by∑

x

|α2
x − β2

x| =
∑
x

(βx − αx)(βx + αx)

=
∑
x

γx(γx + 2αx)

≤
∑
x

γ2x + 2|γxαx| (triangle inequality)

≤ ∥γ∥22 + 2∥γ∥2∥α∥2 (Cauchy–Schwarz)

≤ ϵ2 + 2ϵ ,

which is at most 4ϵ since ϵ ≤ 2 by the triangle inequality (∥|ϕ⟩ − |ψ⟩∥2 ≤ ∥|ϕ⟩∥2 + ∥|ψ⟩∥2 = 2). Hence the
TV distance is at most 2ϵ.

Theorem 4. Grover’s algorithm is optimal. The quantum query complexity of OR is Ω(2n/2).

Proof. We have just shown that for an algorithm with T queries, there is a state we should accept and one
we should reject which we can distinguish with probability at most 1

2 + T√
2n

. To correctly answer at least

2/3 of the time, this must be at least a constant larger than 1/2, which requires T = Ω(2n/2).

3 Polynomial Method for Grover Lower Bound

Now we introduce a powerful method for proving lower bounds, known as the polynomial method. For this
purpose, it is convenient to consider the function f : {0, 1}n → {0, 1} as a long bit string x = x1x2 . . . x2n

where xi = f(Bin(i)). Here, Bin(i) means the binary representation of i. Let us also write N := 2n.
In this language, the goal for the OR problem is to determine whether any xi is equal to 1. Suppose we

have a quantum query algorithm that solves this question. We start by applying a arbitrary followed by an
oracle call:

|0⟩ →
N∑
i=1

αi |i⟩ →
N∑
i=1

(−1)xiαi |i⟩ .

Note that in general, we would also need to have an ancilla register, but the analysis is identical, so we have
omitted it for clarity. The key observation is that xi ∈ {0, 1} implies (−1)xi = 1− 2xi. Hence we can write
this state as

N∑
i=1

(1− 2xi)αi |i⟩ .

In other words, the amplitudes of our state after a single quantum query are polynomials in the variables
x1, . . . , xN . In fact, we now claim by induction that after T queries, the amplitudes will be polynomials of
degree T in {xi}. This proof relies on the following ideas (i) applying a phase oracle increases the degree of
the polynomial by 1 as we have seen above and (ii) applying any unitary does not increase the degree.

Now that we have that, suppose after making all T of our oracle calls and applying unitaries we end up
in some state

|ψ⟩ =
N∑
i=1

αi(x) |i⟩ ,

where each αi(x) is a degree T polynomial in x1, x2, . . . xN . Our acceptance probability is ⟨ψ|P |ψ⟩ for some
projector P which is determined by the measurement outcomes we accept (e.g., measuring the first qubit
corresponds to the projector P = |0⟩⟨0| ⊗ I). Expanding out this probability(

N∑
i=1

α∗
i (x) ⟨i|

)
P

 N∑
j=1

αj(x) |j⟩

 =

N∑
i,j=1

α∗
i (x)αj(x) ⟨i|P |j⟩
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we see that it is a which is a degree 2T polynomial. Let’s call it p(x).
We note that the problem we consider is symmetric: no matter what permutation we apply to the string x,

the answer to “whether there exists a 1 in the string” should not change. Now, consider another polynomial
q which is the sum of all results of p after applying an arbitrary permutation.

q(x) =
1

N !

∑
π∈SN

p(π · x)

where we denote by π ·x as the result of applying the permutation to the bit string x, i.e. π ·(x1, x2, . . . xn) =
(xπ(1), xπ(2), . . . xπ(N)). By our previous observation (the problem’s answer is invariant under permutation
of the input string), q(x) should also be at least the acceptance probability of the algorithm. Furthermore,
q(x) is now symmetric.

To be clear, q(x) is a multivariate polynomial in x1, . . . , xN . However, we now claim that because q(x)

is symmetric it can be written as a univariate polynomial of the same degree r(z) where z =
∑N

i=1 xi.
To show this, we will use the following fact: for every symmetric polynomial over Boolean variables, the

coefficients of all terms of the same degree are equal. To prove this, simply take the smallest degree for
which this is not true and consider the two terms with different coefficients. Setting the variables to be all
1’s in one term and the rest 0’s gives a different result from setting the variables to be all 1’s in the other
term and the rest 0’s. Since both terms have the same number of variables, this is a contradiction because
the function was supposed to be symmetric.

Let βi be the coefficient of any term in q(x) which has degree i. Notice that our new variable z =
∑N

i=1 xi
counts the number of variables which are 1. Therefore, using the above argument, we can write

q(x) =

deg q∑
i=0

βi

(
z

i

)
=

deg q∑
i=0

βi
z(z − 1) · · · (z − i+ 1)

i!
= r(z)

as the expression that counts how many terms in the original expansion of q(x) had the same degree.
Let’s return to our specific problem. To summarize, we have a polynomial r(z) of degree 2T which

captures the acceptance probability of the quantum algorithm. If the quantum algorithm were perfect (i.e.,
had no error), then r(0) = 0 and r(z) = 1 for all z ̸= 0. Since the quantum algorithm can err with probability
at most 1/3, the acceptance probabilities must have values in the following ranges:

0 1 2
...

N
0

0.33

0.67

1

To be clear, the polynomial r(z) can do whatever it likes on non-integer points, but on the values 0, 1, . . . , N ,
it must fall within the specified ranges. We now want to show that any polynomial which has that behavior
must necessarily have relatively high degree. Specifically, we can apply the Markov brothers’ inequality:

Theorem 5 (Markov brothers’ inequality). If p(x) is a polynomial, then

max |p′(x)| ≤
∣∣∣∣max p(x)−min p(x)

N

∣∣∣∣ (deg p)2,
where the max and min values are for 0 ≤ x ≤ N and p′(x) denotes the first derivative.
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Theorem 6. If r(z) as above has the desired properties, then T = Ω(
√
N).

Proof. Plugging in r to the Markov brothers’ inequality and rearranging and weakening slightly gives us

N max
0≤z≤N

|r′(z)| ≤ max
0≤z≤N

r(z)(2T )2

Let M = max0≤z≤N r(z), and pick z0 with r(z0) = M (we can do so since [0, N ] is compact). Let’s
analyze two possible cases:

• M < 2: Note this is the “most likely” case, since we don’t expect our function to go skyrocketing. In
order to have r(0) ≤ 1/3 and r(1) ≥ 2/3, by the mean value theorem there must be some z ∈ [0, 1]
with r′(z) ≥ 1/3. Plugging this into the brothers’ inequality, we get

N

12T 2
≤ N

4T 2
max |r′(z)| ≤ max r(z) < 2

so in this case we know that T = Ω(
√
N).

• M ≥ 2: In this case, the mean value theorem implies that |r′(c)| ≥ 2(M − 1) for some c ∈ [⌊z0⌋, ⌈z0⌉],
since r must return down to at most 1 for each integer, and the closest integer is at most 1/2 away.
We get 2N(M − 1) ≤M(2T )2, so

N

2T 2
≤ M

M − 1
≤ 2

and hence again we know that T = Ω(
√
N).

Combining everything together, we get a new proof of Theorem 4 using the polynomial method:

Proof: (Theorem 4). Any quantum query algorithm that approximates OR with T queries gives rise to a
polynomial r of degree 2T that approximates OR. By Theorem 6, any such polynomial must have degree
Ω(

√
N). Hence, d = Ω(

√
N).

Remark 7. If we want perfect accuracy, r(z) = 1 for z = 1, 2, . . . N , so the fundamental theorem of algebra
tells us that deg r ≥ N , so we need at least N/2 queries.

4 Complexity of Parity

We’ve seen the Deutsch-Josza algorithm which can compute x1 ⊕ x2 . . .⊕ xN in N/2 quantum queries. We
claim this is tight.

Theorem 8. The quantum query complexity of the parity function is precisely N/2.

Proof. The parity function is symmetric, so running the polynomial method as above again gives us r(z)
which must now have values in these ranges:

0 1 2 3 4
...

N
0

0.33

0.67

1
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In particular, r(z) = 1/2 at N distinct values, one each between i and i+ 1 for 0 ≤ i < N . Thus by the
fundamental theorem of algebra, deg r ≥ N . Since the degree of r is at most twice the number of queries,
we must have made at least N/2 queries.

5 Ambainis’ Adversary Method

We now present the setup for one final method for proving that the query complexity of OR is Ω(
√
N).

Theorem 9 (Ambainis’ Adversary Method [Amb00]). Suppose f : {0, 1}N → {0, 1}. Let X,Y ⊆ {0, 1}N be
such that ∀x ∈ X, f(x) = 0 and ∀y ∈ Y, f(y) = 1. Let R ⊆ X × Y be a relation such that

1. For every x ∈ X, there are at least m0 inputs y ∈ Y such that (x, y) ∈ R.

2. For every y ∈ Y , there are at least m1 inputs x ∈ X such that (x, y) ∈ R.

3. For every x ∈ X and i ∈ {1, . . . , N}, there are at most s0 inputs y ∈ Y with (x, y) ∈ R and xi ̸= yi.

4. For every y ∈ Y and i ∈ {1, . . . , N}, there are at most s1 inputs x ∈ X with (x, y) ∈ R and xi ̸= yi.

Then the quantum query complexity of f is Ω
(√

m0m1

s0s1

)
.

Now we apply this to OR. Let X = {0N}, Y = {all strings with exactly one 1}, and R = X × Y . Then
m0 = N , m1 = 1, s0 = 1, s1 = 1, so the query complexity is Ω(

√
N).
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