
CSE 291 / Math 277A - Quantum Complexity Theory November 8th, 2022

Lecture 14

Lecturer: Daniel Grier Scribe: Christopher Ye

1 Warmup Exercise

Recall from a previous lecture the complexity class NC0 of classical circuits with bounded fan-in and constant
depth. In this warmup, we introduce a similar class AC0 with the modification that the gates are now allowed
to have unbounded fan-in. However, we restrict the size of the circuits to be polynomial to avoid the trivial
case that any function can be solved by a depth-2 circuit of unbounded fan-in and unbounded size.

Definition 1. (AC0) The class of languages L ⊆ {0, 1}∗ such that there exists a uniform family of poly-size,
constant-depth classical circuits Cn : {0, 1}n → {0, 1} built from AND, OR, and NOT gates with unbounded
fan-in where x ∈ L if and only if Cn(x) = 1.

We show that this class is strictly larger than NC0.

Proposition 2. NC0 ⊊ AC0

Proof. There are two things to prove: every NC0 language is in AC0, and there is some language in AC0 that
is not in NC0. For the first requirement, notice that AC0 contains a larger set of possible gates than NC0, so
AC0 contains NC0 so long as NC0 circuits are also restricted to polynomial size (recall that we did not make
this size restriction explicit). However, this is actually just a consequence of the fact that NC0 circuits have
constant depth. Since each output bit depends on at most constantly-many input bits and gates, the rest of
the circuit can be dropped. Therefore, every NC0 circuit can be made to have linear size.

To show that AC0 is strictly larger than NC0, consider the OR function. Clearly it is in AC0 by simply
taking an OR gate on all inputs. However, once again, every output bit of an NC0 circuit depends only on
a constant number of inputs, so it cannot possibly compute the OR function correctly on arbitrarily many
inputs.

2 Hierarchy of NCk and ACk

Above, we saw that adding unbounded fan-in increases the power of NC0. However, below we will see that
there is a relation problem solved by QNC0 circuits that is not solved by AC0 circuits. A key ingredient in
this result is famous result that parity is not computable by AC0 circuits.

Definition 3.

PARITY =

{
x ∈ {0, 1}∗ |

n⊕
i=1

xi = 0

}

Theorem 4 (Ajtai [Ajt83], Furst-Saxe-Sipser [FSS84]). PARITY /∈ AC0

Proof. For a nice write-up of this result, see [Kat] and [BS90].

We can also generalize the definitions of NC0 and AC0 to allow for increasingly larger depth circuits.

Definition 5. NCk is the class of languages computable by a uniform family of poly-size circuits with
O(logk n)-depth and bounded fan-in gates. ACk is the class of languages computable by a uniform family
of poly-size circuits with O(logk n)-depth and unbounded fan-in AND, OR, and NOT gates.

Note that PARITY ∈ NC1 since we can build a O(log n)-depth circuit computing parity by building a
tree of XOR gates. In general, we have the following set of relations,

NC0 ⊊ AC0 ⊊ NC1 ⊆ AC1 ⊆ . . .

1

where the only strict inclusions known are the first two.
Above, we showed that NC1 is separated from AC0 by the PARITY function. What if we forcibly include

the PARITY function into AC0? This gives the motivation for defining the class AC0[p], which is like AC0

with the additional MODp gate. MODp : {0, 1}∗ → {0, 1} is a Boolean gate that maps the input to 1 if the
sum of the inputs is a multiple of p, and outputs 0 otherwise. Note that the parity gate is a MOD2 gate.

Definition 6. (AC0[p]) The class of languages L ⊆ {0, 1}∗ such that there exists a uniform family of poly-
size, constant-depth classical circuits Cn : {0, 1}n → {0, 1} built from AND, OR, NOT, and MODp gates
with unbounded fan-in where x ∈ L if and only if Cn(x) = 1.

In particular, we have that PARITY ∈ AC0[2]. Furthermore, we have the following fact on the distinctness
of AC0[p] for different primes p.

Theorem 7 (Razborov [Raz87], Smolensky [Smo87]). Let p, q be distinct primes. Then AC0[p] ̸= AC0[q].

3 How hard is it to classically simulate QNC0 circuits?

In the previous lecture, we saw that there was a relation task solved by a constant-depth quantum circuit
(QNC0) that cannot be solved by NC0 circuits. How far can we push this separation? In other words, can
we show that even larger classes of classical circuits (e.g., AC0, NC1) cannot simulate these simple quantum
circuits?

It turns out that you can! A results of Bene Watts, Kothari, Schaeffer, and Tal [WKST19] states that
there is a relational problem in QNC0 that cannot be solved by AC0 circuits. The task is essentially identical
to the GRID problem we saw in the previous lecture.

Today, we will try to go a step further. Namely, we will show that any classical circuit computing (a
modification of) this task can also be used to compute NC1-hard problems.

Theorem 8 (Grier, Schaeffer [GS20]). Suppose there is a classical circuit O solving (a modification) of the
GRID problem. Then this circuit O can be leveraged to solve NC1-hard problems. Formally, NC1 ⊆ (AC0)O.

Let’s see how we might go about using this theorem to prove separations. Suppose that the circuit O
could be instantiated with an AC0 circuit. By the theorem, we have

NC1 ⊆ (AC0)AC
0

= AC0

where the last equality follows from the observation that giving an AC0 circuit the “additional” ability to
solve AC0 problems doesn’t increase its power. Recall, however, that PARITY is a problem in NC1 that is
not in AC0 (Theorem 4), so it is impossible for AC0 to contain NC1. This contradiction implies that there
must not have been an AC0 circuit that solved the modified GRID problem.

We can generalize this argument to show that not even AC0[p] circuits can solve this problem. We get

NC1 ⊆ (AC0)AC
0[p] = AC0[p]

since we can replace any oracle access with a constant-depth circuit withMODp gates. However, NC1 ̸⊆ AC0[q]
for all primes q by Theorem 7. Therefore, O /∈ AC0[p] for any prime p. In other words, we have exhibited
a problem that can be computed by QNC0 circuits but not by AC0[p] circuits. We will see much more
“impressive” separations later between quantum and classical complexity classes, but these separations will
rely on unproven conjectures. This is one of the largest-known unconditional separations between natural
classes of quantum and classical circuits.

4 Sketching the proof of Theorem 8

There are five main ingredients that go into the proof of Theorem 8. We start with the definition of the
problem itself.

2

4.1 Ingredient 1: Making the GRID problem interactive

The main modification we make to GRID problem is interactivity. Namely, we start as usual with the N ×N
grid, but then we give the input (i.e., the measurement bases) in two distinct rounds. We imagine these
questions being asked by a classical verifier. In round 1, the verifier gives measurement bases for some subset
of the qubits. The prover is expected to make those measurements, and output measurement results that
are consistent with the bases specified by the verifier. In round 2, the verifier gives measurement bases
for the remainder of the qubits, and the prover must once again return measurement outcomes that are
consistent with both these bases given in round 2 and its previously returned answers in round 1. It’s worth
emphasizing that this problem is both interactive and relational, that is, the prover can output any responses
that have non-zero probability in the true distribution that arises from measuring the quantum graph state.

For a quantum circuit, the interactive and non-interactive problems are essentially identical—the circuit
simply defers certain measurements until round 2. However, imagine that you had a classical instantiation
of the prover. In this case, the classical circuit could overcome the quantum no-cloning limitation, and can
copy its state after the first step. Therefore, it can perform the second stage arbitrarily many times by
“rewinding” the state of the machine to the end of the first stage. This intuitively suggests that a classical
circuit playing the same game has to be somehow more powerful than its quantum counterpart.

On a final technical note, the grid that we will be using for this lecture is actually the 2×N grid not the
N ×N grid. It turn out that using the N ×N grid will actually give us a stronger result (showing that the
circuit can be leveraged to solve problems in a complexity class called ⊕L). That said, the 2 ×N case will
still have most of the main technical ideas, so we will stick with that.

4.2 Ingredient 2: A NC1-Hard Problem - Clifford Multiplication

Recall that our goal is to leverage any classical simulator for the interactive GRID problem above to solve
NC1-hard problems. Here, we present this NC1-hard problem:

Clifford Multiplication:
Input: List of 2-qubit Clifford gates g1, g2, . . . , gn
Output: Their product gngn−1 · · · g1

Fact 9. Clifford Multiplication is NC1-hard, even under the promise that the output is I⊗I or H⊗H.

We omit the proof but note that this is a consequence of Barrington’s Theorem, namely that multiplying
over the symmetric group S5 is an NC1-hard problem. Indeed, there is a subgroup of the Clifford group (the
Clifford group mod the Pauli group) that is isomorphic to S6, so that multiplication over the Clifford gates
must be at least as hard as multiplication over S5.

4.3 Ingredient 3: Measurement-Based Quantum Computation

Above, we have presented a problem that seems in some sense inherently sequential, or at the very least cannot
be computed in constant depth. However, we now introduce measurement-based quantum computation, a
trick we will use to parallelize the sequential computation via quantum measurements. We use the following
proposition without proof. A similar statement will be shown in the following lecture.

Proposition 10. For all 2-qubit Clifford gates g, there exists a set of 38 measurements on the 2 × 20 grid
graph state that leaves the unmeasured qubits in the state Pg |00⟩ for some Pauli matrix P , where P depends
on the outcomes of the measurements.

In fact, we claim without proof that you can string these gadgets together, so that if you have a graph
state of size 2× (20n) and a list of gates g1, . . . , gn, then there is a set of measurements on the graph state
that creates the state

PngnPn−1gn−1 . . . P1g1 |00⟩

where the Pauli terms P1, . . . , Pn depend on the measurement results obtained in each one of the gadgets.

3

Next, recall that the Pauli matrices are a normal subgroup of the Clifford group (i.e., conjugating a
Pauli operator by a Clifford operator yields another Pauli). This implies that you can “push” Pauli elements
through Clifford elements:

gP = gP (g†g) = (gPg†)g = P ′g

where P ′ is just some other Pauli operator. Using this idea, we can propagate all the Pauli operators to the
front of our expression:

Pngn . . . P1g1 = P ′
nP

′
n−1 . . . P

′
1gn . . . g1 = P ∗gngn−1 . . . g1 |00⟩

for some Pauli operator P ∗.
Recall that we can use the promise that gngn−1 · · · g1 is either I⊗I orH⊗H. By our previous observation,

we just need to distinguish between these cases where the state has been corrupted by some unknown Pauli
P ∗. (Note that in principle, one could compute P ∗ from the measurement outcomes. Unfortunately, this
computation is itself NC1-hard, so we can’t do this in our reduction).

To circumvent this issue, let’s first consider the stabilizer groups for our ending state |00⟩ and |++⟩,
respectively: 

I I
ZI
IZ
ZZ

 ,


I I
X I
IX
XX


Finally, applying P ∗ to the state is equivalent to conjugating by P ∗ in the stabilizer group. The key fact

is that conjugation by Pauli matrices can only change the sign. In particular, the output of the measurement
based quantum computation is 

I I
aP I
b IP
abPP


for some P ∈ {X,Z} and a, b ∈ {±1}. Our goal then is to distinguish P = X,P = Z.

4.4 Ingredient 4: Randomizing the Output

In the next two sections, we will treat the prover as a sort of adversary. Recall that our claim is that we
can leverage the simulator to solve the Clifford multiplication problem. In particular, this should be true
regardless of which answers the simulator gives us. Therefore, we should expect that the simulator gives us
the maximally useless answers at all times. Or, in other words, that the simulator is acting adversarially.
To be clear, the simulator must still be correct, but it can still try to answer correctly, without being useful.

Unfortunately, it will turn out that if we only have two possible outcomes (the I ⊗ I outcome and the
H⊗H outcome), then adversarial outcomes will prevent us from learning which state we have. To overcome
this, let us briefly describe how we can “randomize” the output of the previous step. Before we compute
gn · · · g1, we can generate random Clifford gates h0, . . . , hn and redefine g′i = higih

−1
i−1. Then,

g′ng
′
n−1 . . . g

′
1 = hngnh

−1
n−1hn−1gn−1h

−1
n−2 . . . h1g1h

−1
0 = hngngn−1 . . . g1h

−1
0

Thus, rather than the two specific stabilizer groups above, we now must distinguish between two stabilizer
groups that are random! Since we chose hi, we know which outcome with correspond to I ⊗ I and H ⊗H,
but what we have essentially done is made the input uniformly random among all sets of n Clifford gates.
The adversary does not know.

4.5 Ingredient 5: The Magic Square

Our goal is to measure our unknown 2-qubit state to learn what it is. It will turn out that any single
measurement cannot give us enough information to determine this state. So, this is the first place we will
use interactivity and the rewinding ingredient shown earlier. Still, even with many measurements, it’s a bit
unclear which measurements we should make.

4

Our measurements will correspond to the rows/columns of the following matrix called the Magic Square:XX Y Y ZZ
Y Z ZX XY
ZY XZ Y X


Let’s note some important properties of this arrangement of Pauli operations:

1. The Pauli operators within each column and row commute. This means that we can “measure” all 3
Pauli operations simultaneously, i.e., rotate to the Z-basis and then measure.

2. The product of each row is −II. That is, the sum of measurement results on a row must be odd.

3. The product of each column is II. That is, the sum of measurement results on a column must be even.

We now need two key observations:

Fact 11. If a measured Pauli operator happens to be in the stabilizer group of the unknown state, then the
measurement result for that Pauli is equal to the sign of the Pauli in the stabilizer group (This is just a
generalization of Lemma 2 from the previous lecture).

Fact 12. There is no consistent way to label a 3× 3 matrix with 0/1 values such that the sum of each row
is odd and the sum of each column is even.

Therefore, if we make all measurements corresponding to each row and each column, there must be some
measurement output which was different for a particular Pauli (Fact 12). On the other hand, if we happened
to measure some Pauli that was in the stabilizer group, then we could not have gotten different results.
Together, the 6 measurements reveal at least one Pauli element which is not in the stabilizer group of the
measured state.

4.6 Putting It All Together

Let’s first consider the problem from the perspective of the quantum algorithm. In round 1, it uses
measurement-based quantum computation (ingredient 3) to prepare the state P ∗gn . . . g1 |00⟩ in constant
depth. The gates g1, . . . , gn correspond to the input of some 2-qubit Clifford multiplication problem (ingre-
dient 2). In round 2, it measures that state in the specified basis.

Now consider a classical simulator achieving the same output as the quantum algorithm. After round 1,
the simulator has some classical internal state which captures the true quantum state P ∗gn . . . g1 |00⟩. Using
the “rewinding” technique on this intermediate state (ingredient 1), it can make many possible measurements
in round 2. Armed with this power, it measures all the magic square Paulis (ingredient 5). In this process,
it learns some non-stabilizer of the state.

Since we randomized our inputs (ingredient 4), this non-stabilizer will appear in one of the two stabilizer
groups for the states we are trying to distinguish with some constant probability. In this case, we learn
exactly which one of our two states we have, and so we have solved the Clifford multiplication problem.

There are many details left to check here, but this is most of the main ideas. For example, we must
check that this reduction can indeed be done with AC0 circuits, which upon closer inspection are actually
randomized, and so there are more subtleties to handle.

References

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of pure and applied logic, 24(1):1–48,

1983.

[BS90] Ravi B Boppana and Michael Sipser. The complexity of finite functions. In Algorithms and
complexity, pages 757–804. Elsevier, 1990.

[FSS84] Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical systems theory, 17(1):13–27, 1984.

5

[GS20] Daniel Grier and Luke Schaeffer. Interactive shallow Clifford circuits: Quantum advantage
against NC1 and beyond. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 875–888, 2020.

[Kat] Jonathan Katz. Lecture on parity.

[Raz87] Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a complete basis
with logical addition. Mathematical Notes of the Academy of Sciences of the USSR, 41(4):333–
338, 1987.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit com-
plexity. In Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages
77–82, 1987.

[WKST19] Adam Bene Watts, Robin Kothari, Luke Schaeffer, and Avishay Tal. Exponential separation
between shallow quantum circuits and unbounded fan-in shallow classical circuits. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 515–526, 2019.

6

