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1 Classical complexity classes

Polynomial Time (P):
Languages L such that there exists a deterministic poly-time Turing machine M such that M accepts x iff
x ∈ L.

Non-deterministic Polynomial Time (NP):
Language L such that there exists deterministic poly-time Turing machine M and polynomial q such that
for all x ∈ {0, 1}n

• If x ∈ L, ∃y ∈ {0, 1}q(n) such that M(x, y) accepts

• If x /∈ L, ∀y ∈ {0, 1}q(n), M(x, y) rejects.

NP is a generalization of P (just forget about the witness string y), so P ⊆ NP. It is widely conjectured that
P ̸= NP, but we do not have a proof!

Bounded-error Probabalistic Polynomial Time (BPP):
Languages L such that there exists a deterministic poly-time Turing machine M and polynomial q such that
for all x ∈ {0, 1}n

• If x ∈ L, then M(x, y) accepts with at least probability 2
3 over uniform choice of y ∈ {0, 1}q(n).

• If x /∈ L, then M(x, y) accepts with probability at most 1
3 over uniform choice of y ∈ {0, 1}q(n).

Once again, it is clear that P ⊆ BPP since we can just forget about the extra random bits. However, we do
not know if BPP ⊆ NP or if NP ⊆ BPP, though it is widely conjectured that P = BPP.

Probabilistic Polynomial Time (PP):
The same setup as BPP, but with a smaller gap between the acceptance and rejection probabilities:

• If x ∈ L, then M(x, y) accepts more than 1
2 of strings y ∈ {0, 1}q(n).

• If x /∈ L, then M(x, y) accepts at most 1
2 of strings y ∈ {0, 1}q(n).

We have that BPP ⊆ PP simply by definition—PP allows for a narrower gap. In fact, PP is powerful enough
even to contain NP. To see this, take any NP machine M , and alter it in the following way. If M(x, y)
accepts, then accept. If M(x, y) rejects, then flip an unbiased coin (to be completely rigorous, one would
need to extend the length of the random string y)—if heads, accept, and if tails, reject. Notice that if there
are no accepting y for the original machine, then the new machine accepts with exactly 50% probability.
However, if there is any accepting y, then the new machine accepts with greater than 50%, and so the
inclusion NP ⊆ PP follows.

Polynomial Space (PSPACE):
Languages L such that there exists a deterministic Turing machine M that uses at most polynomial space
and M accepts x iff x ∈ L.

We have that PP ⊆ PSPACE since a PSPACE machine can simply count all the y ∈ {0, 1}q(n) that make a
poly-time Turing machine accept. There are exponentially many such y, but this is not an issue since we
can erase the previous computation as we are enumerating over all the y.
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Exponential Time (EXP):
Languages L such that there exists a deterministic Turing machine M and a polynomial q such M halts in
2q(n) time and M accepts x iff x ∈ L.

We have that PSPACE ⊆ EXP because a Turing machine that uses polynomial space can only have ex-
ponentially many configurations. And, if you were to reach the same configuration twice, then you will be
in an infinite loop, so you might as well halt.
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Figure 1: Diagram of class inclusions. A is below B if A ⊆ B.

2 Circuit encodings and BQP

To properly define the quantum complexity class BQP, we need to first discuss how a quantum circuit is
encoded. Let us suppose that the circuit is constructed from some reasonable universal gate set (i.e., all
the amplitudes used in the gates are efficiently computable). We will use the notation ⟨Q⟩ to denote the
encoding of a circuit Q as a bit string. We now discuss the requirement for a proper encoding:

1. The mapping from a circuit to its encoding must be injective.

2. The encoding is of polynomial length. If Q has m gates, then ⟨Q⟩ has at most poly(m) bits.

3. The encoding is of length at least m (avoid “super clever” encodings that compress things too much).

Definition 1 (Poly-time Uniformity). A circuit family {Qn}∞n=1 is poly-time uniform if there exists a poly-
time Turing machine such that on input 1n outputs ⟨Qn⟩.

Bounded-error Quantum Polynomial Time (BQP):
Languages L such that there exists poly-time uniform class of quantum circuits {Qn} such that ∀x ∈ {0, 1}n:

• If x ∈ L, probability of measuring 1 on the first qubit of Qn(|x⟩ ⊗ |0 . . . 0⟩) is at least 2
3 .

• If x /∈ L, probability of measuring 1 on the first qubit of Qn(|x⟩ ⊗ |0 . . . 0⟩) is at most 1
3 .

The reason that we include the ancillary register |0 . . . 0⟩ in the definition is to allow for some robustness
in the definition of the class. For example, recall the principle of deferred measurement from the last lecture.

Theorem 2. BQP ⊆ EXP.

Proof. An n-qubit state can be represented as a vector |x⟩ ∈ C2n . Each unitary operation is equivalent as
multiplying the state vector with a unitary matrix of size 2n × 2n. Since matrix-vector products can be
computed in time (2n)2 = 4n, and simulating the circuit requires at most polynomially many matrix-vector
product operations, we then have BQP ⊆ EXP.

Theorem 3. BQP ⊆ PP.

Proof in the next lecture. . .
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