
The Complexity of Bipartite Gaussian Boson Sampling 

Daniel Grier    

University of Waterloo 

Daniel Brod

Fluminense Federal 
University

Juan Miguel Arrazola

Xanadu Quantum 
Technologies

Marcos Benicio de 
Andrade Alonso

Fluminense Federal 
University

Nicolás Quesada

Polytechnique 
Montréal



Quantum computational advantage with linear optics
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Is it hard to classically sample from the distributions produced by 
weak photonic quantum computers? 

(Fock) BosonSampling [Aaronson, Arkhipov STOC 11]

Strong candidates:

Fermion Sampling with magic input states [Oszmaniec et al. QIP 22]

Gaussian Boson Sampling [Lund et al. PRL 14, Hamilton et al. PRL 17]

Problems:
1) Disconnected landscape of conjectures

Scattershot BosonSampling

2) Extra conjectures needed to accommodate experimental costs



BipartiteGBS - quantum advantage with fewer assumptions
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Bipartite Gaussian Boson Sampling (BipartiteGBS): 
Method for programming a Gaussian Boson Sampling device

Connects Gaussian Boson Sampling with (Fock) BosonSampling

Removes a conjecture that is required for BosonSampling:

Theorem: Hardness when modes are quadratic in the number of photons

Versatile tool for building future hardness arguments:

Theorem: Hardness with constantly-many collisions



BosonSampling revisited
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Theorem [AA]: It is hard* to classically sample from the output of a 
BosonSampling experiment (even approximately).

 photonsn  modesm

U =

u11 u12 … u1m
u21 u22 … u2m
⋮ ⋮ ⋱ ⋮

um1 um2 … umm
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Theorem [AA]: It is hard* to classically sample from the output of a 
BosonSampling experiment (even approximately).
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BosonSampling probabilities given by permanent
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Quantum computational advantage from linear optics
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Theorem [AA]:  There is no classical polynomial-time algorithm to approximately 
sample from the output distribution of a BosonSampling experiment.

Modulo four conjectures:

1) Non-collapse of the polynomial hierarchy  

2) Gaussian permanent estimation is -hard#%
3) Anti-concentration of Gaussian permanents

4) The  submatrices of an  unitary matrix look Gaussiann × n n2 × n2
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Theorem [AA]:  There is no classical polynomial-time algorithm to approximately 
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Theorem [AA]:  There is no classical polynomial-time algorithm to approximately 
sample from the output distribution of a BosonSampling experiment.

Physical Interpretation:  
Sufficient to have 
quadratically more modes 
than photons .(m ≈ n2)  modesm

 photonsn

Theorem [AA]:  Can remove 
conjecture if m ≈ n5

Modulo four conjectures:

4) The  submatrices of an  unitary matrix look Gaussiann × n n2 × n2

1) Non-collapse of the polynomial hierarchy  

2) Gaussian permanent estimation is -hard#%
3) Anti-concentration of Gaussian permanents



Experimental Gaussian Boson Sampling uses few modes

7

Gaussian Boson Sampling Experiments 
Two recent experiments claiming quantum 
advantage [Science 20, PRL 21]

Experiment #1:  45 photons, 100 modes 
Experiment #2:  113 photons, 144 modes

Credit:  Quantum computational advantage using photons [Zhong, et al. Science 20]



Hardness of classical sampling with few modes
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BosonSampling conjectures:
1) Non-collapse of the polynomial hierarchy  

2) Gaussian permanent estimation is -hard#%
3) Anti-concentration of Gaussian permanents

4) The  submatrices of an  unitary matrix look Gaussiann × n n2 × n2

Theorem:  There is no classical polynomial-time algorithm to approximately sample 
from the output distribution of a BipartiteGBS experiment whenever .m ≈ ([n]2

Requires only three of the four BosonSampling conjectures



Submatrices of Haar random unitaries
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= Per ∘

Required Property:  this submatrix 
approximates a matrix with i.i.d. 
complex Gaussian entries whenever 
the unitary is Haar random.

Problem:  Only rigorous convergence 
bounds whenever .m = ω(n5)



Prior work on submatrices of Haar random unitaries

10

Theorem [Jiang 2006]:  The  submatrices of random  real orthogonal 
matrices converge (in total variation) to real Gaussian matrices whenever .

n × n m × m
m = ω(n2)

Issues for BosonSampling:

1) Real matrices rather than complex ones

2) Does not bound the rate of this convergence

Theorem [AA]:  Variation distance is  whenever .O(δ) m ≥ n5

δ
log2 n

δ

We do not try to improve this theorem directly!



Avoid conjecture by directly encoding Gaussian entries
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BipartiteGBS:  There is a Gaussian Boson Sampling experiment such that the output 
probabilities are governed by the permanents of submatrices of arbitrary matrices.

-mode squeezed state2

U V
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Avoid conjecture by directly encoding Gaussian entries
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BipartiteGBS:  There is a Gaussian Boson Sampling experiment such that the output 
probabilities are governed by the permanents of submatrices of arbitrary matrices.

left outcome right outcome

U V



Avoid conjecture by directly encoding Gaussian entries
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BipartiteGBS:  There is a Gaussian Boson Sampling experiment such that the output 
probabilities are governed by the permanents of submatrices of arbitrary matrices.

Pr[ ] ∝&

Right outcome

c11 c12 c13 c14 c15
c21 c22 c23 c24 c25
c31 c32 c33 c34 c35
c41 c42 c43 c44 c45
c51 c52 c53 c54 c55

Le
ft 

ou
tc
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e

Per ∘

Idea:  Let  be GaussianC



BipartiteGBS - input states and output probabilities
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S2(r) |0,0⟩ = 1
cosh r

∞

∑
n=0

(tanh r)n |n, n⟩Input states:

S2(1) |0,0⟩ = .65 .49 .38+ + + ⋯

Output probabilities:

Pr[S & T] = 1
-

|Per(CS,T) |2

∏m
i=1 si!ti!

C = U diag(tanh ri) VT

Left modes:

Right modes:

S = |s1, …, sm⟩
T = | t1, …, tm⟩

- =
m

∏
i=1

cosh2(ri)

Singular value decomposition of arbitrary 
matrix with singular values in .[0,1)

Expected photon number
⟨n⟩ = sinh2(r)
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S2(r) |0,0⟩ = 1
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∞
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Pr[S & T] = 1
-

|Per(CS,T) |2

∏m
i=1 si!ti!

C = U diag(tanh ri) VT

Left modes:

Right modes:

S = |s1, …, sm⟩
T = | t1, …, tm⟩

- =
m

∏
i=1

cosh2(ri)

Scattershot BosonSampling:  
  and ’s constantV = I ri

Expected photon number
⟨n⟩ = sinh2(r)



Proof outline for main theorem
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1) Suppose there is a classical algorithm 
that samples from the output distribution 
of a BipartiteGBS experiment ∥1C − 1′ C∥≤ β

2) Hide the  Gaussian matrix  in an  Gaussian matrix n × n X m × m C

Gaussian Permanent Estimation:  Given  matrix  with i.i.d. standard complex 
Gaussian entries, estimate  to -additive accuracy with probability .

n × n X
|Per X |2 (ϵn!) 1 − δ

3) BipartiteGBS with matrix  has output with probability proportional to C |Per X |2

4) Estimate this probability using Stockmeyer counting on  to compute 1′ C |Per X |2

5) By conjecture, algorithm for  implies collapse of polynomial hierarchy|Per X |2

Conjecture [AA]:  Gaussian Permanent Estimation is -hard.#%



Is the Stockmeyer counting argument good enough?
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Lemma:  There is a  algorithm that estimates to additive error5%%6% |Per X |2

Gaussian Permanent Estimation:  Estimate  to -additive accuracy|Per X |2 (ϵn!)

ϵ (-m(3/2)n (m
n )

−2

)
Accuracy of this estimate depends on - =

m

∏
i=1

cosh2(ri)

 depends on the singular values of matrix with i.i.d. Gaussian entries-

Have we just traded one problem in random matrix theory with another?



Is the Stockmeyer counting argument good enough?

15

Lemma:  There is a  algorithm that estimates to additive error5%%6% |Per X |2

Gaussian Permanent Estimation:  Estimate  to -additive accuracy|Per X |2 (ϵn!)

ϵ (-m(3/2)n (m
n )

−2

)
Accuracy of this estimate depends on - =

m

∏
i=1

cosh2(ri)

 depends on the singular values of matrix with i.i.d. Gaussian entries-

Theorem:      whenever  .Pr[- ≤ 1
δ

e m] ≤ δ m = Θ(n2)

Proof tool: for Gaussian , we have .C -−1 = det(I − CC†)



Summary and future directions
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Theorem:  Hard to approximately sample from the output distribution of a GBS 
experiment in the no-collision regime  under BosonSampling conjectures.(m ≈ n2)

Probabilities given by permanents of Gaussian matrices with repeated rows/columns

Can we get hardness in the high-collision regime ?(m = o(n2))

Repeated Gaussian Permanent Estimation:  Given  Gaussian matrix  and 
collision patterns ,  with , 
estimate  to -additive accuracy with probability .

c × c X
S = (s1, …, sc) T = (t1, …, tc) s1 + … + sc = t1 + … + tc = n

|Per XS,T |2 (ϵn!s1!⋯sc!t1!⋯tc!) 1 − δ

Speculative conjecture:  Repeated Gaussian Permanent Estimation is -hard#%


