The Complexity of Bipartite Gaussian Boson Sampling

Daniel Grier University of Waterloo

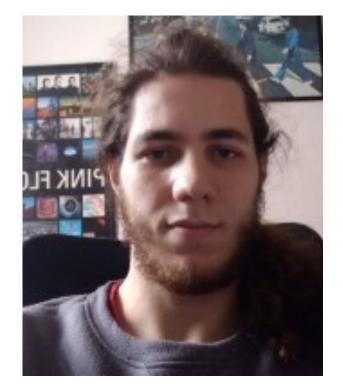
Daniel Brod

Fluminense Federal University

Juan Miguel Arrazola

Xanadu Quantum Technologies

Marcos Benicio de Andrade Alonso



Fluminense Federal University

Nicolás Quesada

Polytechnique Montréal

Quantum computational advantage with linear optics

Is it hard to classically sample from the distributions produced by weak photonic quantum computers?

Strong candidates:

(Fock) BosonSampling [Aaronson, Arkhipov STOC 11]

Fermion Sampling with magic input states [Oszmaniec et al. QIP 22]

Gaussian Boson Sampling [Lund et al. PRL 14, Hamilton et al. PRL 17]

Problems:

1) Disconnected landscape of conjectures

2) Extra conjectures needed to accommodate experimental costs

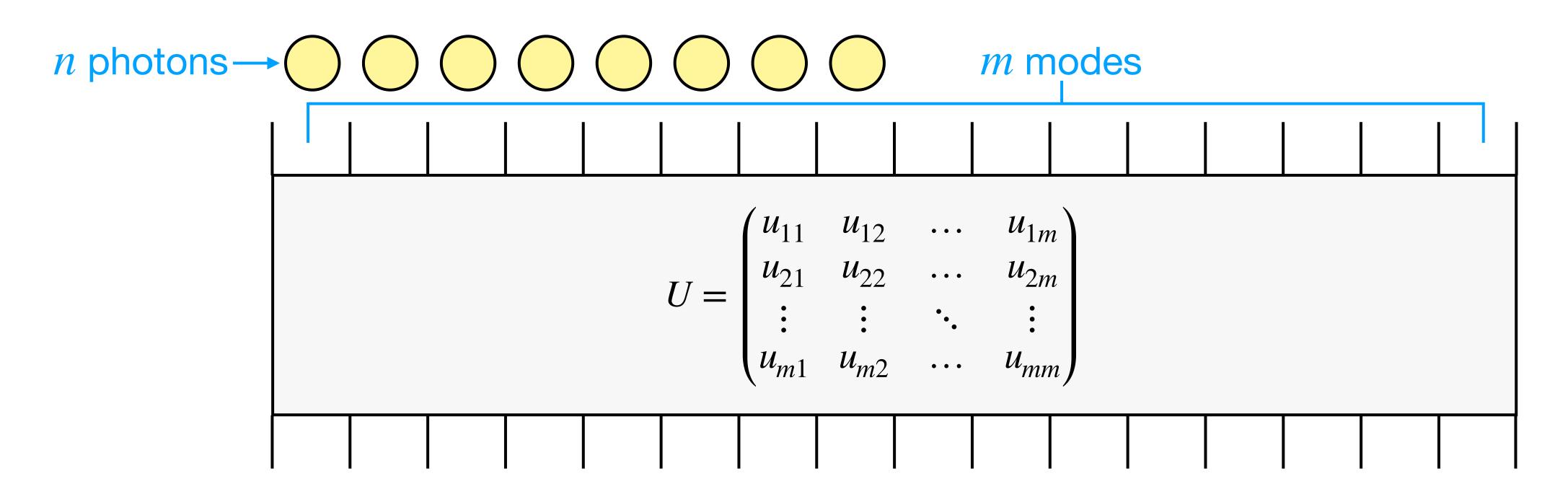
BipartiteGBS - quantum advantage with fewer assumptions

Bipartite Gaussian Boson Sampling (BipartiteGBS): Method for programming a Gaussian Boson Sampling device

- Connects Gaussian Boson Sampling with (Fock) BosonSampling
- Removes a conjecture that is required for BosonSampling: **Theorem:** Hardness when modes are quadratic in the number of photons
- Versatile tool for building future hardness arguments: **Theorem:** Hardness with constantly-many collisions

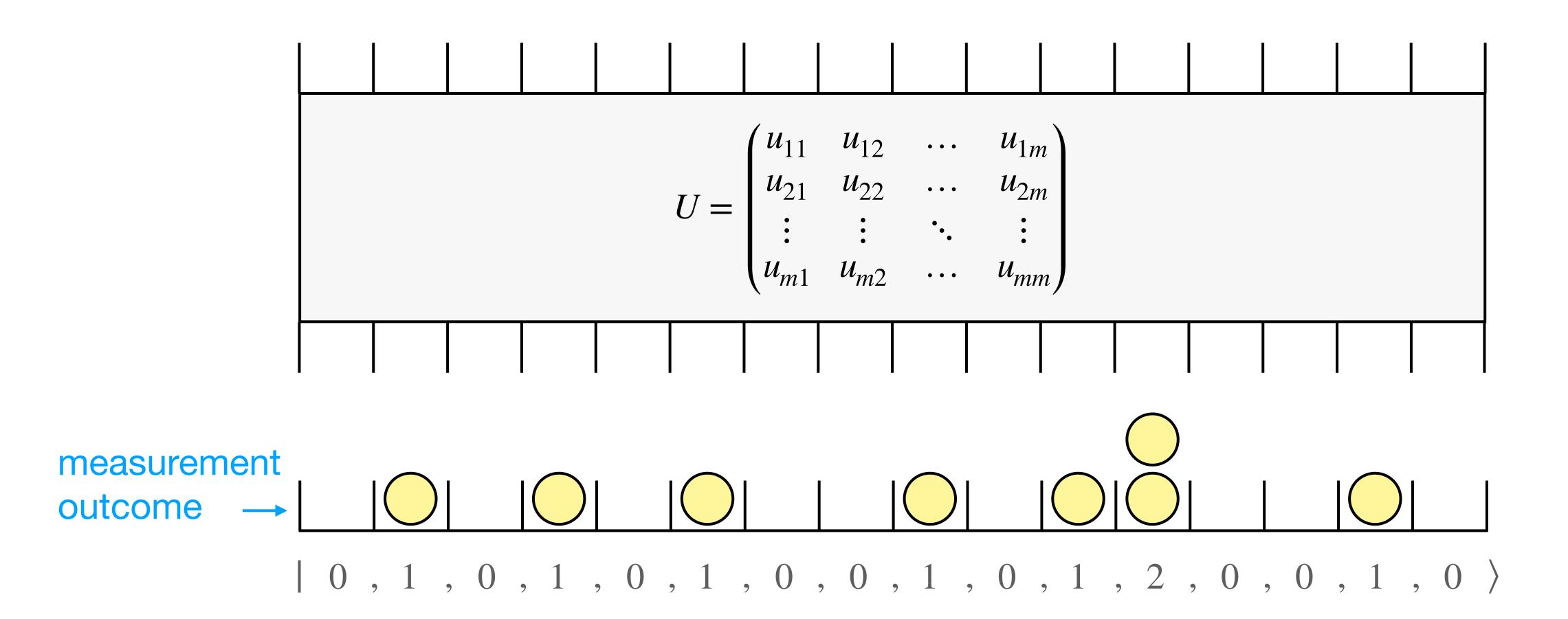
BosonSampling revisited

Theorem [AA]: It is hard* to classically sample from the output of a BosonSampling experiment (even approximately).

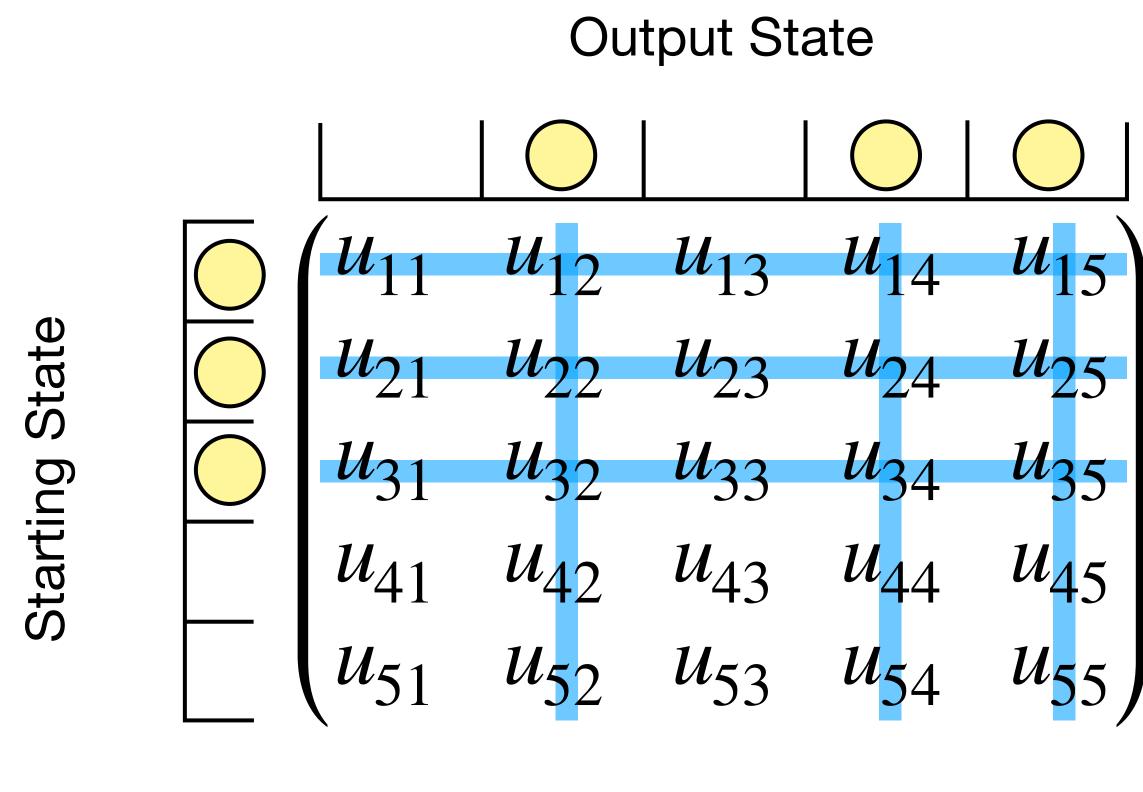


BosonSampling revisited

Theorem [AA]: It is hard* to classically sample from the output of a BosonSampling experiment (even approximately).



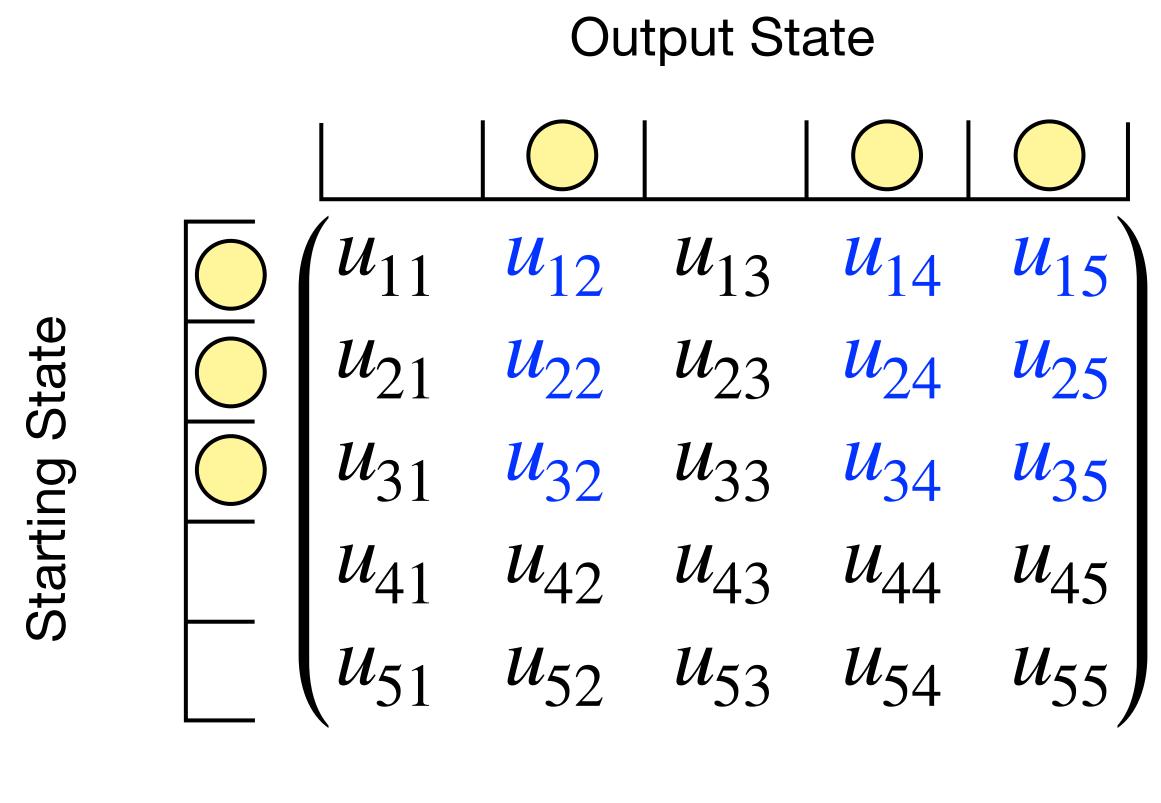
BosonSampling probabilities given by permanent



Pr[]

 \smile

BosonSampling probabilities given by permanent



Pr[|

Output State

 u_{11} u_{12} u_{13} u_{14} u_{15} u_{22} u_{23} u_{24} u_{25}

Quantum computational advantage from linear optics

sample from the output distribution of a BosonSampling experiment.

Modulo four conjectures:

- 1) Non-collapse of the polynomial hierarchy
- 2) Gaussian permanent estimation is #P-hard
- 3) Anti-concentration of Gaussian permanents
- 4) The $n \times n$ submatrices of an $n^2 \times n^2$ unitary matrix look Gaussian

Theorem [AA]: There is no classical polynomial-time algorithm to approximately

Quantum computational advantage from linear optics

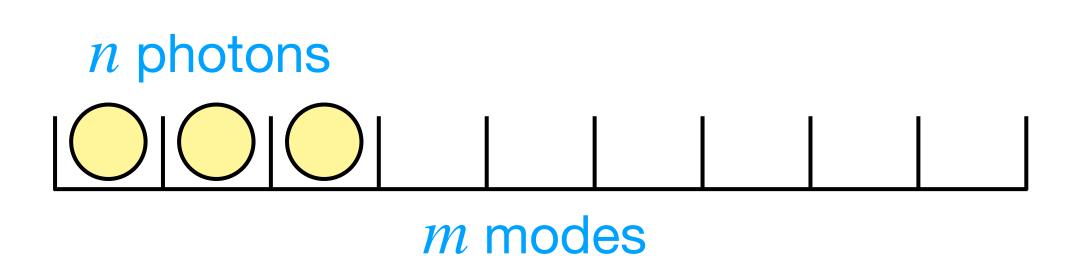
Theorem [AA]: There is no classical polynomial-time algorithm to approximately sample from the output distribution of a BosonSampling experiment.

Modulo four conjectures:

- 1) Non-collapse of the polynomial hierarchy
- 2) Gaussian permanent estimation is #P-hard
- 3) Anti-concentration of Gaussian permanents

Physical Interpretation:

Sufficient to have quadratically more modes than photons ($m \approx n^2$).



4) The $n \times n$ submatrices of an $n^2 \times n^2$ unitary matrix look Gaussian

Quantum computational advantage from linear optics

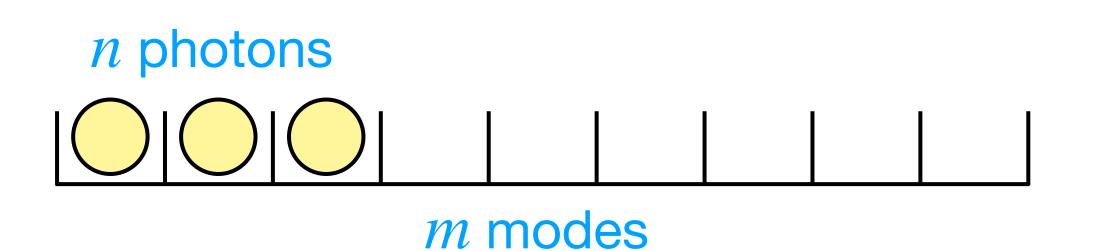
Theorem [AA]: There is no classical polynomial-time algorithm to approximately sample from the output distribution of a BosonSampling experiment.

Modulo four conjectures:

- 1) Non-collapse of the polynomial hierarchy
- 2) Gaussian permanent estimation is #P-hard
- 3) Anti-concentration of Gaussian permanents

Physical Interpretation:

Sufficient to have quadratically more modes than photons ($m \approx n^2$).



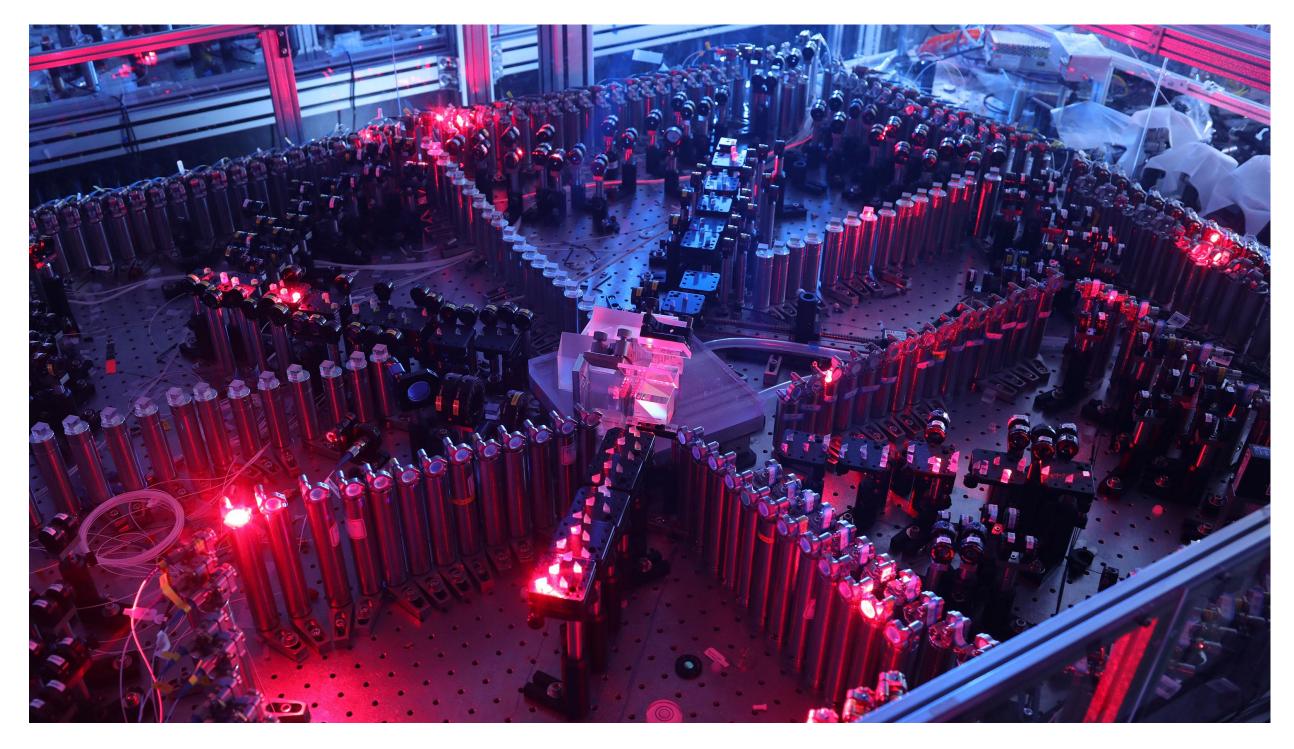
Theorem [AA]: Can remove conjecture if $m \approx n^5$

-4) The $n \times n$ submatrices of an $n^2 \times n^2$ unitary matrix look Gaussian

Experimental Gaussian Boson Sampling uses few modes

Gaussian Boson Sampling Experiments Two recent experiments claiming quantum advantage [Science 20, PRL 21]

Experiment #1: 45 photons, 100 modes **Experiment #2:** 113 photons, 144 modes



Credit: Quantum computational advantage using photons [Zhong, et al. Science 20]

Hardness of classical sampling with few modes

from the output distribution of a BipartiteGBS experiment whenever $m \approx \mathbb{E}[n]^2$.

Requires only three of the four BosonSampling conjectures

BosonSampling conjectures:

- 1) Non-collapse of the polynomial hierarchy
- 2) Gaussian permanent estimation is #P-hard
- 3) Anti-concentration of Gaussian permanents

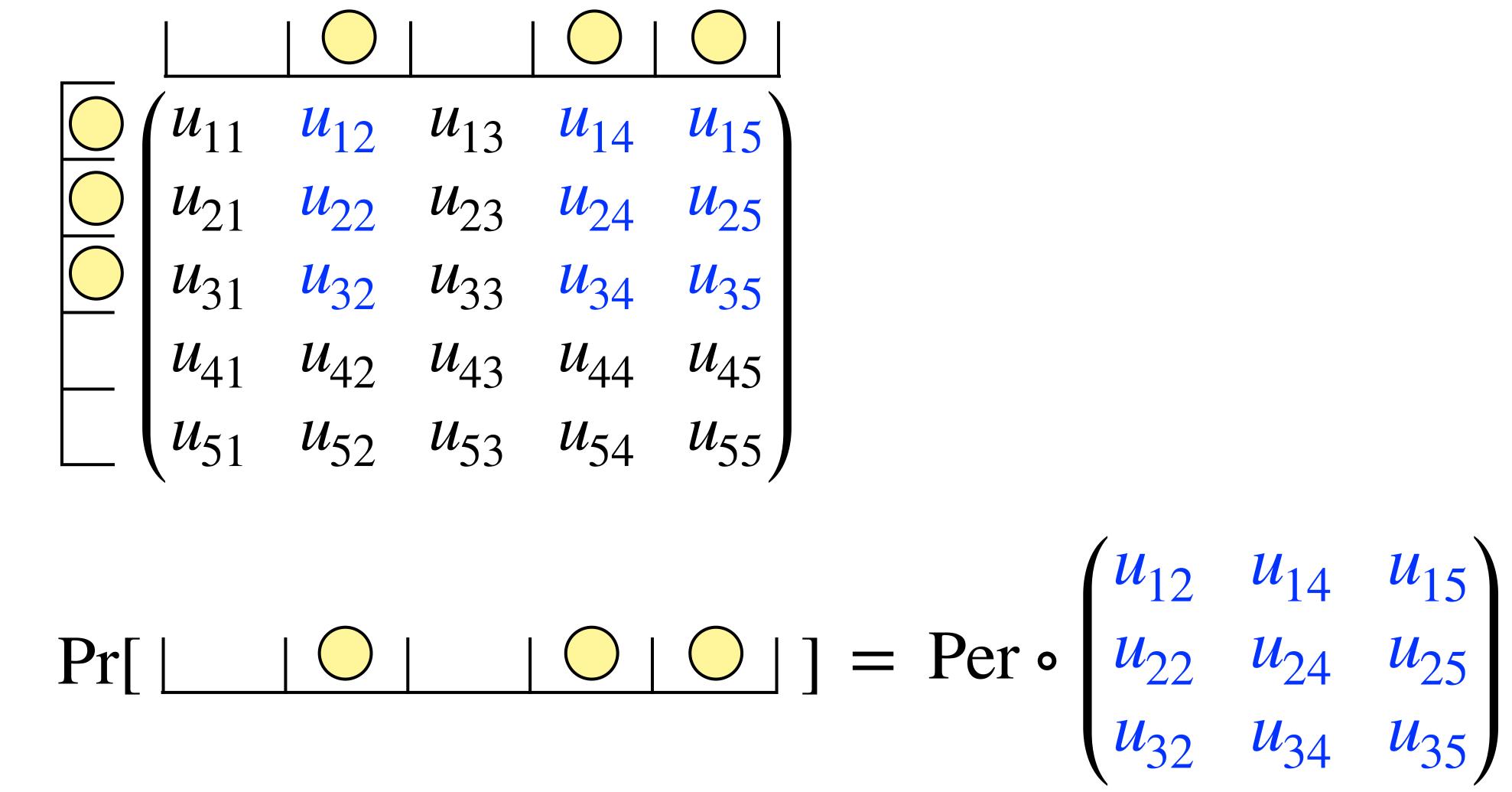
- **Theorem:** There is no classical polynomial-time algorithm to approximately sample

4) The $n \times n$ submatrices of an $n^2 \times n^2$ unitary matrix look Gaussian

Submatrices of Haar random unitaries

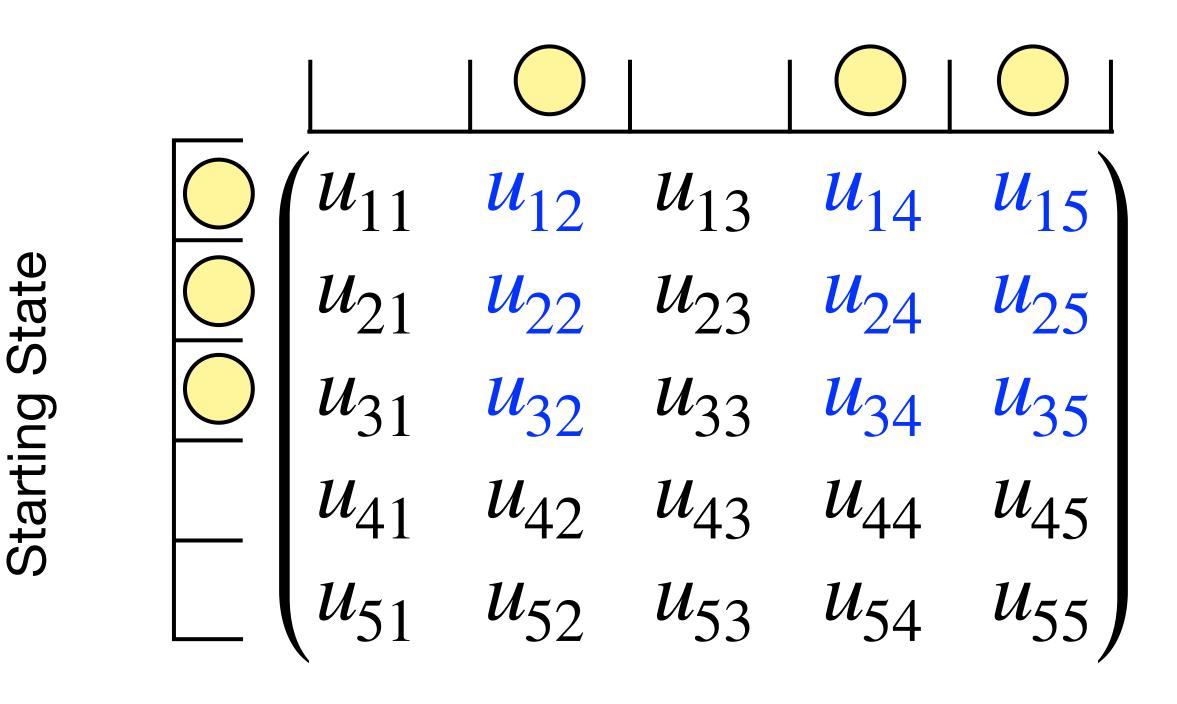
Starting State

Output State



Submatrices of Haar random unitaries

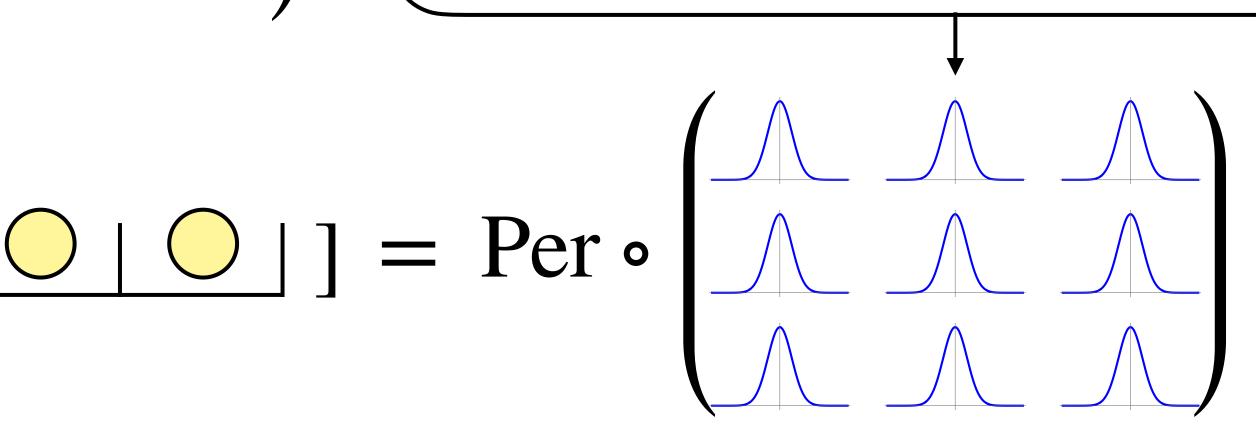
Output State



Pr[|

Problem: Only rigorous convergence bounds whenever $m = \omega(n^5)$.

Required Property: this submatrix approximates a matrix with i.i.d. complex Gaussian entries whenever the unitary is Haar random.



Prior work on submatrices of Haar random unitaries

Issues for BosonSampling:

1) Real matrices rather than complex ones

2) Does not bound the *rate* of this convergence

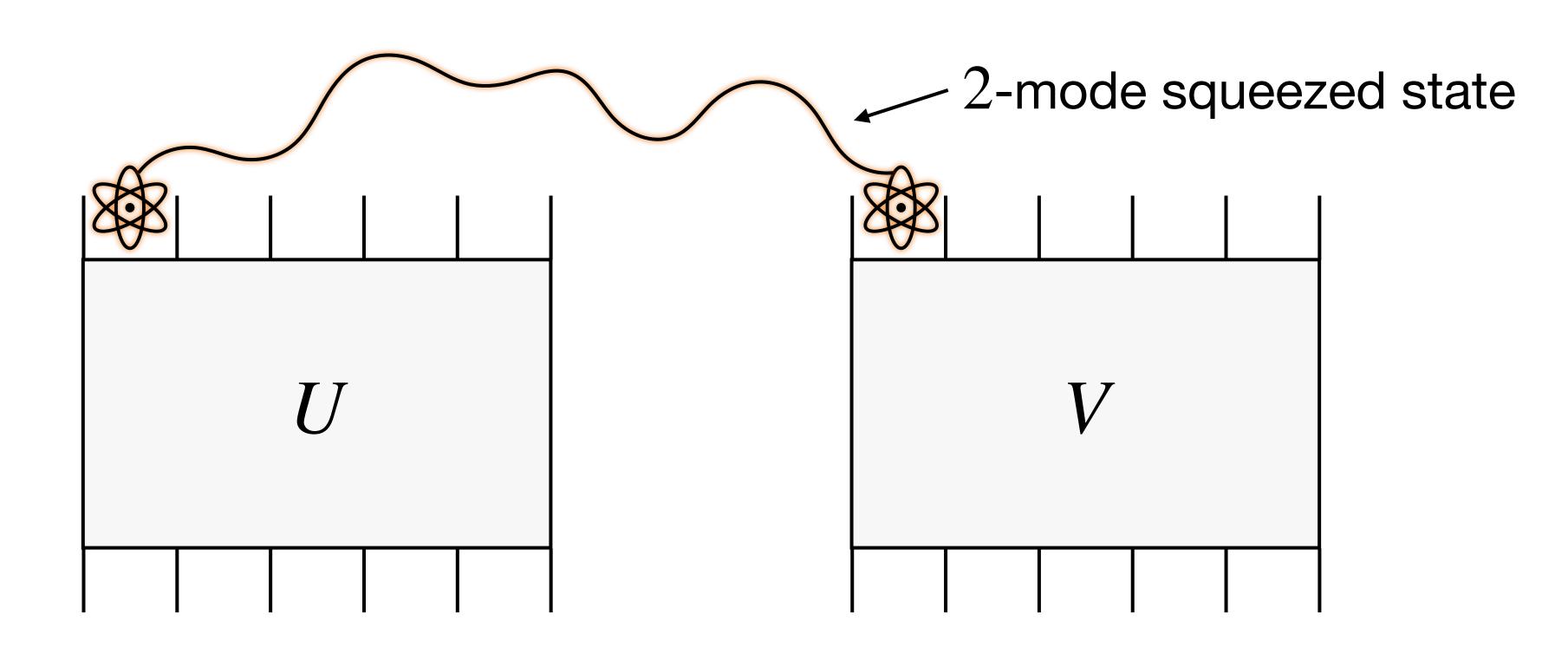
Theorem [AA]: Variation distance is $O(\delta$

We do not try to improve this theorem directly!

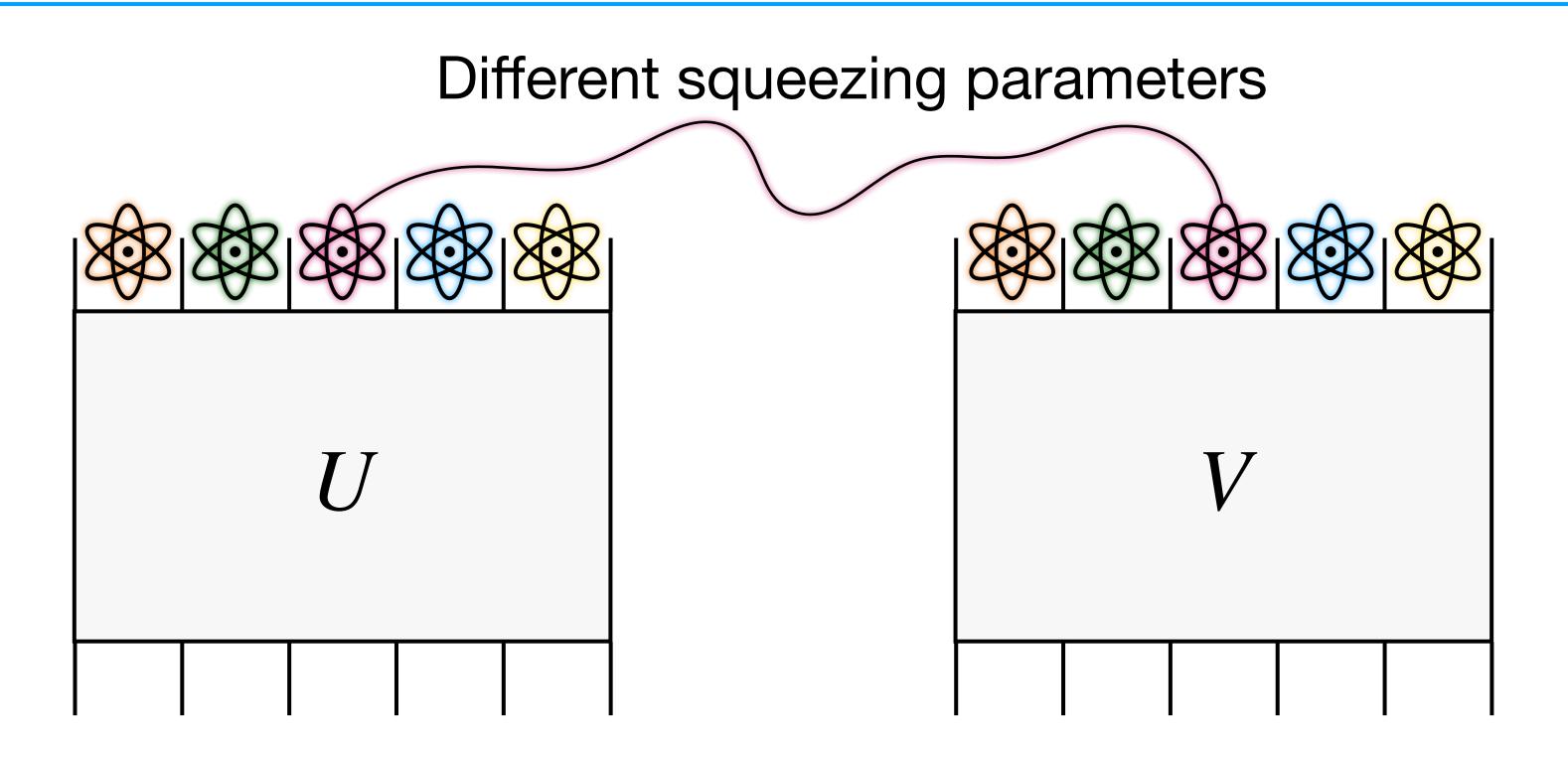
Theorem [Jiang 2006]: The $n \times n$ submatrices of random $m \times m$ real orthogonal matrices converge (in total variation) to real Gaussian matrices whenever $m = \omega(n^2)$.

S) whenever
$$m \ge \frac{n^5}{\delta} \log^2 \frac{n}{\delta}$$
.

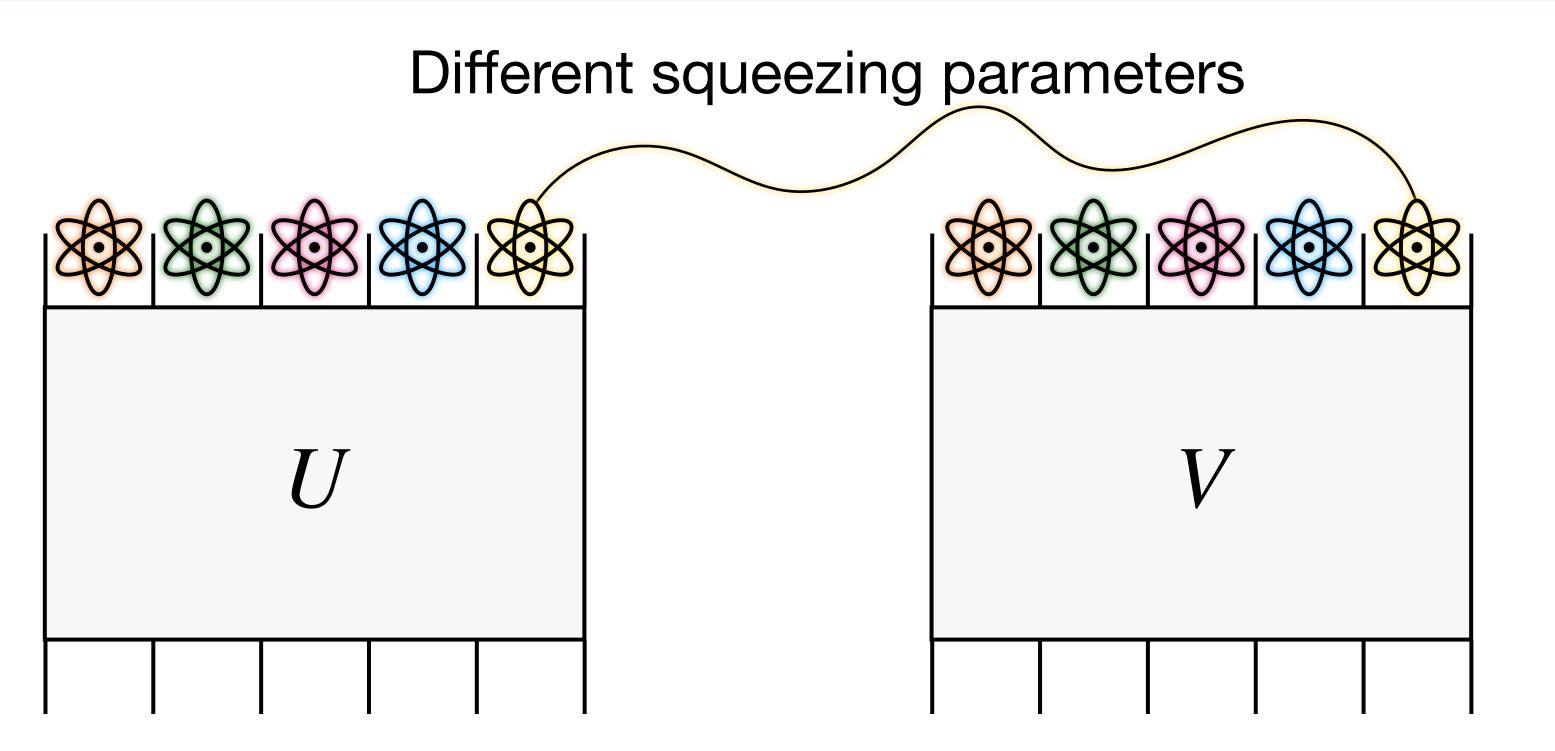
BipartiteGBS: There is a Gaussian Boson Sampling experiment such that the output probabilities are governed by the permanents of submatrices of *arbitrary* matrices.



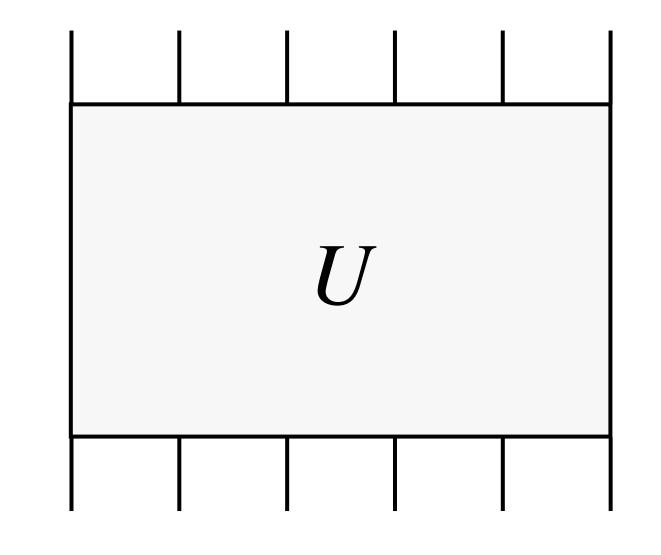
BipartiteGBS: There is a Gaussian Boson Sampling experiment such that the output probabilities are governed by the permanents of submatrices of *arbitrary* matrices.



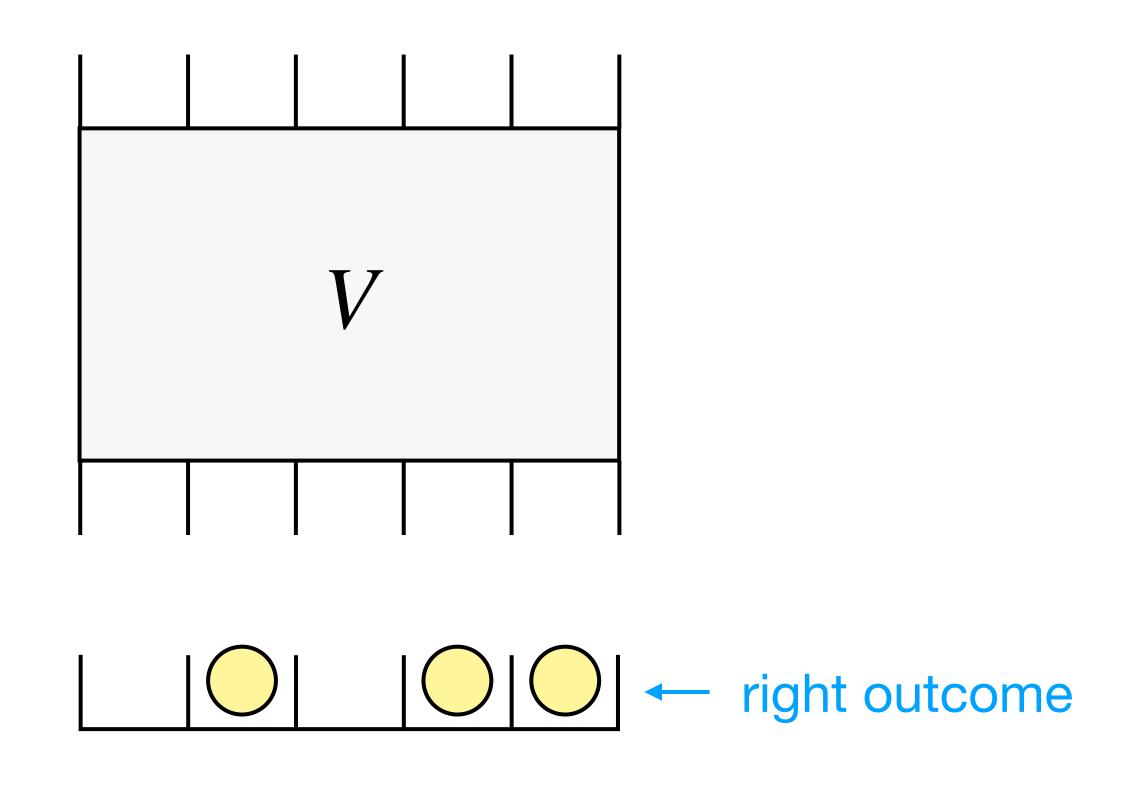
BipartiteGBS: There is a Gaussian Boson Sampling experiment such that the output probabilities are governed by the permanents of submatrices of *arbitrary* matrices.



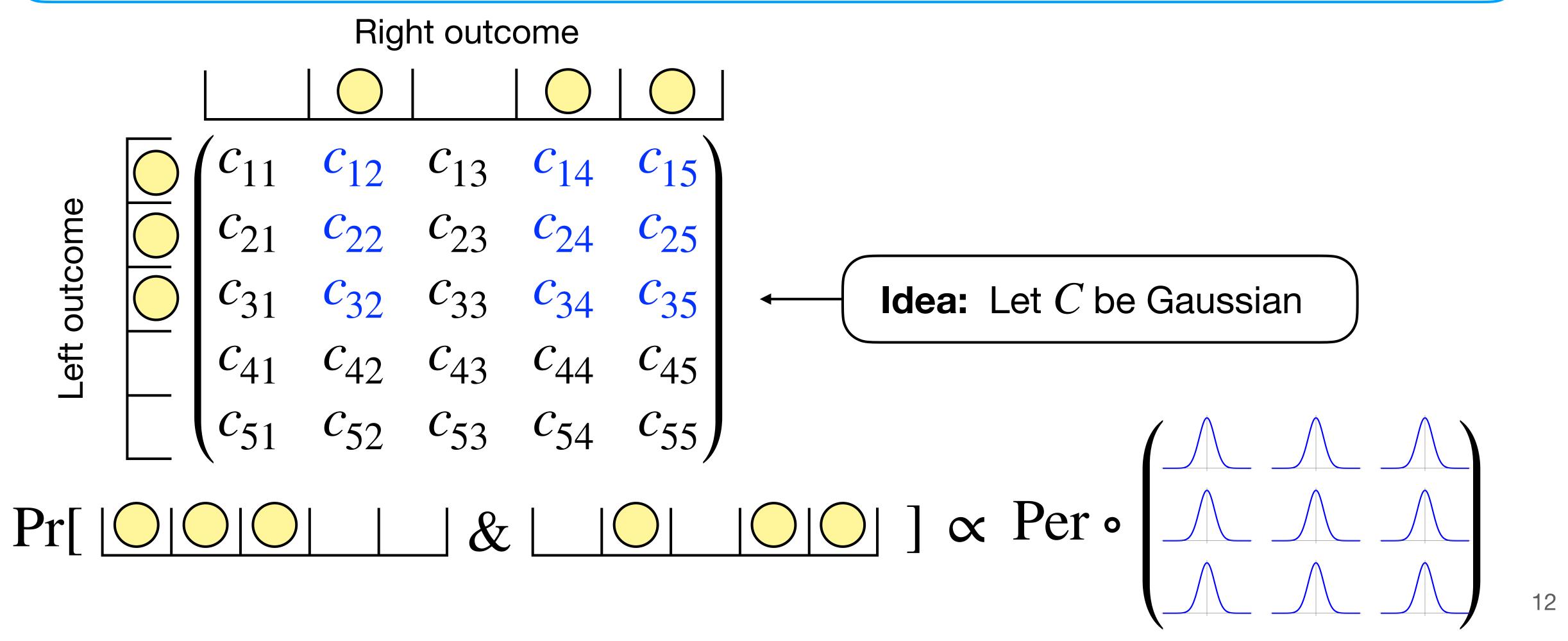
BipartiteGBS: There is a Gaussian Boson Sampling experiment such that the output probabilities are governed by the permanents of submatrices of *arbitrary* matrices.



left outcome → [○|○|○|



BipartiteGBS: There is a Gaussian Boson Sampling experiment such that the output probabilities are governed by the permanents of submatrices of arbitrary matrices.



BipartiteGBS - input states and output probabilities

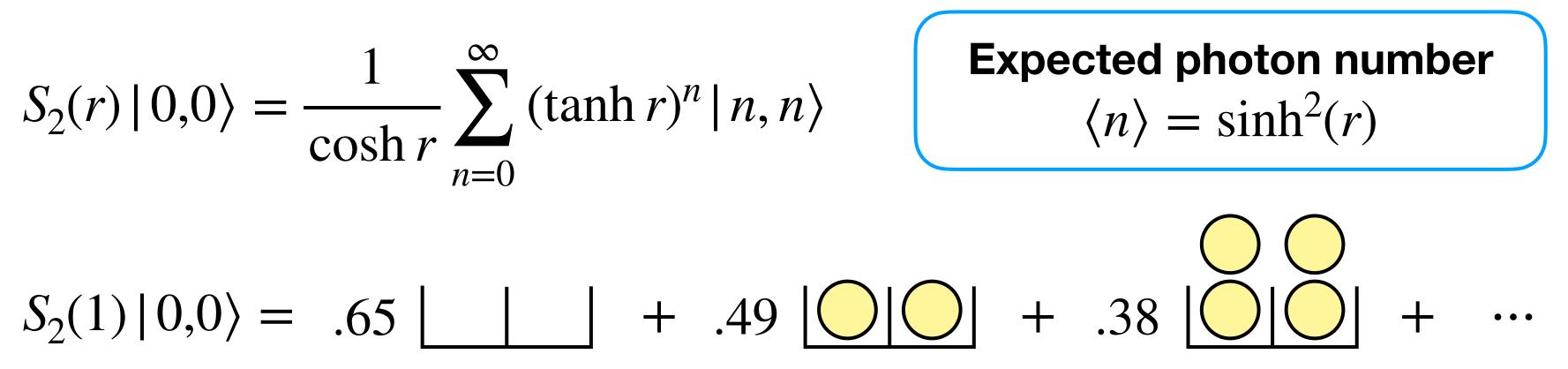
Input states:

Output probabilities:

Left modes:
$$S = |s_1, ..., s_m\rangle$$

Right modes: $T = |t_1, ..., t_m\rangle$

$$\Pr[S \& T] = \frac{1}{\mathscr{Z}} \frac{|\operatorname{Per}(C_{S,T})|^2}{\prod_{i=1}^m s_i ! t_i !}$$



Singular value decomposition of arbitrary matrix with singular values in [0,1).

$$C = U \operatorname{diag}(\tanh r_i) V^T$$
$$\mathscr{Z} = \prod_{i=1}^{m} \cosh^2(r_i)$$

BipartiteGBS - input states and output probabilities

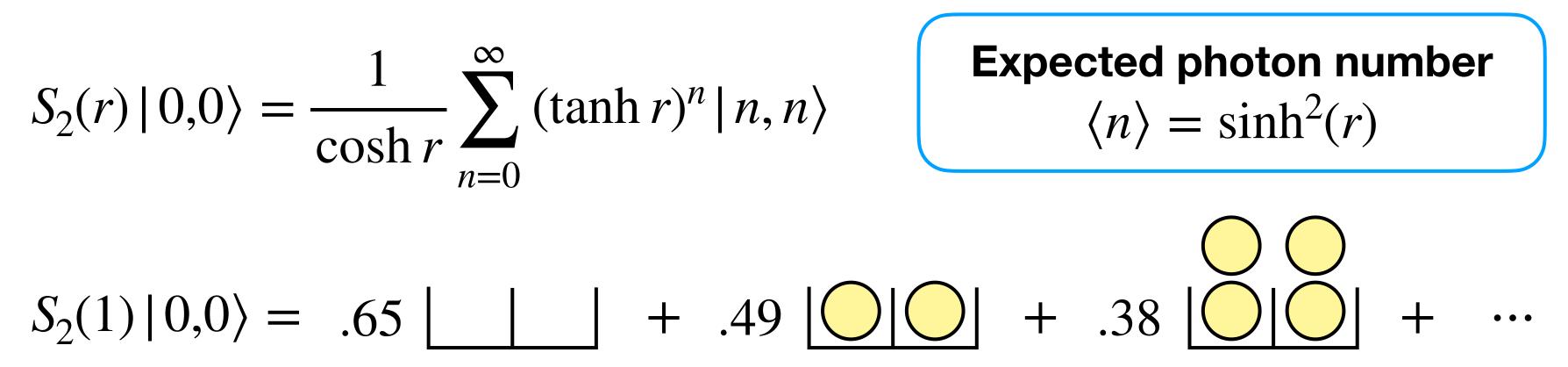
Input states:

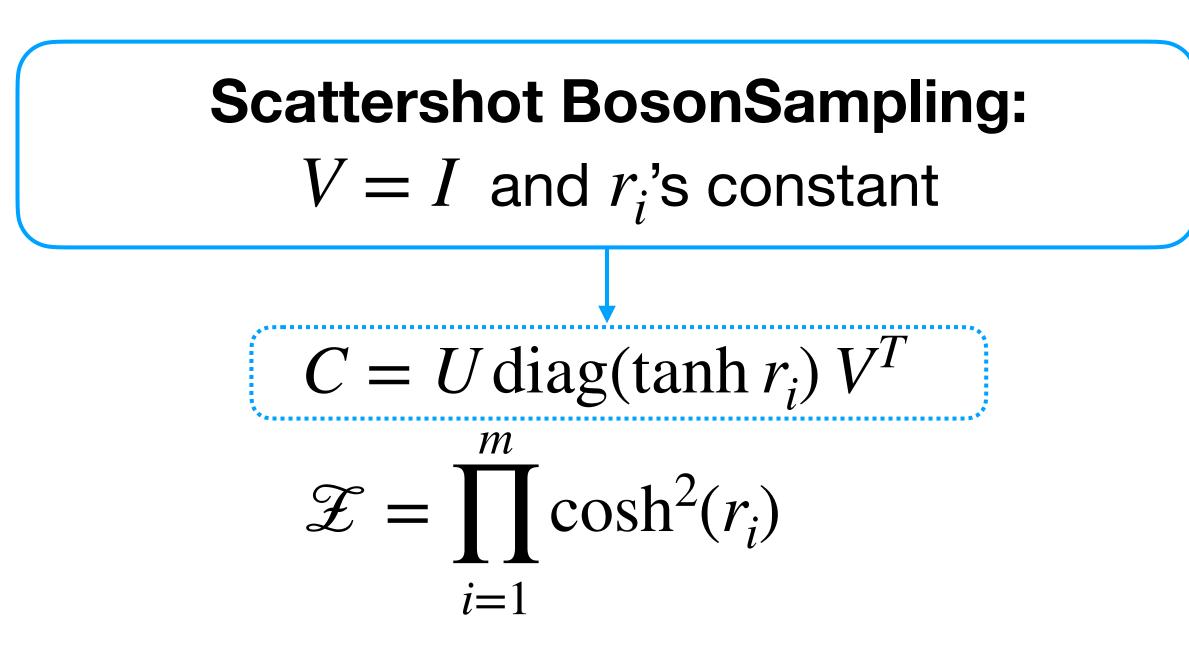
Output probabilities:

Left modes:
$$S = |s_1, ..., s_m\rangle$$

Right modes: $T = |t_1, ..., t_m\rangle$

$$\Pr[S \& T] = \frac{1}{\mathscr{Z}} \frac{|\operatorname{Per}(C_{S,T})|^2}{\prod_{i=1}^m s_i ! t_i !}$$





Proof outline for main theorem

Suppose there is a classical algorithm that samples from the output distribution of a BipartiteGBS experiment

Gaussian Permanent Estimation: Given $n \times n$ matrix X with i.i.d. standard complex Gaussian entries, estimate $|\operatorname{Per} X|^2$ to $(\epsilon n!)$ -additive accuracy with probability $1 - \delta$.

Conjecture [AA]: Gaussian Permanent Estimation is #P-hard.

- 2) Hide the $n \times n$ Gaussian matrix X in an $m \times m$ Gaussian matrix C
- 3) BipartiteGBS with matrix C has output with probability proportional to $|\operatorname{Per} X|^2$

4) Estimate this probability using Stockmeyer counting on \mathscr{D}'_C to compute $|\operatorname{Per} X|^2$

5) By conjecture, algorithm for $|\operatorname{Per} X|^2$ implies collapse of polynomial hierarchy

$$\|\mathscr{D}_C - \mathscr{D}'_C\| \le \beta$$

Is the Stockmeyer counting argument good enough?

Gaussian Permanent Estimation: Estin

Lemma: There is a BPP^{NP} algorithm that estimates $|\operatorname{Per} X|^2$ to additive error $\epsilon \left(\mathcal{Z}m^{(3/2)n} \left(\frac{m}{n} \right)^{-2} \right)$

Accuracy of this estimate depend

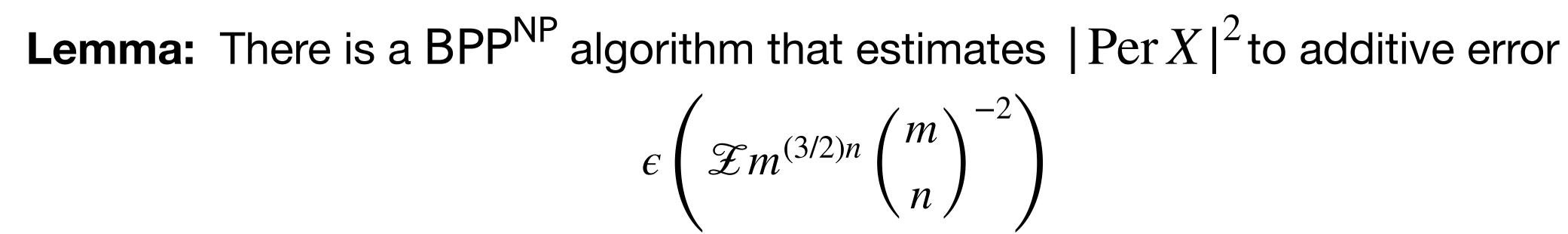
 \mathscr{X} depends on the singular values of matrix with i.i.d. Gaussian entries

mate
$$|\operatorname{Per} X|^2$$
 to $(\epsilon n!)$ -additive accuracy

ds on
$$\mathscr{Z} = \prod_{i=1}^{m} \cosh^2(r_i)$$

Have we just traded one problem in random matrix theory with another?

Is the Stockmeyer counting argument good enough?



Accuracy of this estimate depend

 \mathscr{X} depends on the singular values of matrix with i.i.d. Gaussian entries

Theorem:
$$\Pr[\mathscr{Z} \leq \frac{1}{\delta}e^{\sqrt{m}}] \leq \delta$$
 whenever $m = \Theta(n^2)$.

Proof tool: for Gaussian C, we have

mate
$$|\operatorname{Per} X|^2$$
 to $(\epsilon n!)$ -additive accuracy

$$\binom{n}{n}$$

ds on
$$\mathscr{Z} = \prod_{i=1}^{m} \cosh^2(r_i)$$

ave
$$\mathscr{Z}^{-1} = \det(I - CC^{\dagger}).$$

Summary and future directions

Theorem: Hard to approximately sample from the output distribution of a GBS

Probabilities given by permanents of Gaussian matrices with repeated rows/columns

Repeated Gaussian Permanent Estimation: Given *c* × *c* Gaussian matrix *X* and collision patterns $S = (s_1, ..., s_c)$, $T = (t_1, ..., t_c)$ with $s_1 + ... + s_c = t_1 + ... + t_c = n$, estimate $|\operatorname{Per} X_{ST}|^2$ to $(\epsilon n!s_1!\cdots s_c!t_1!\cdots t_c!)$ -additive accuracy with probability $1-\delta$.

Speculative conjecture: Repeated Gaussian Permanent Estimation is #P-hard

experiment in the no-collision regime ($m \approx n^2$) under BosonSampling conjectures.

Can we get hardness in the high-collision regime $(m = o(n^2))$?

