
CSE 105 - Theory of Computation (Winter 2026)
Homework 2: Closure properties, Nondeterminism, and Regular Expressions
Due Wednesday, January 21, 11:59pm

Instructions: There are two parts to this homework:

• Concept check (Question 1): Every student must complete this individually on Grade-
scope.

• Written Homework (Question 2-5): You may work individually or in a team of up to
3 people. Please ensure your name(s) and PID(s) are clearly visible on the first page
of your submission, and then upload the PDF to Gradescope. If working in a group,
submit only one submission per group: one partner uploads the submission through
their Gradescope account and then adds the other group member to the Gradescope
submission by selecting their name in the “Add Group Members” dialog box. You
will need to re-add your group member every time you resubmit a new version of your
assignment.

It is highly recommended (though not required) that you type your answers. It is your
responsibility to make any handwriting clear and legible for grading. A LaTeX template for
the homework is provided on Canvas. For ease of grading, please start each new problem on
a separate page.

We will only be grading some of the problems below for correctness. However, because
all of the concepts are important, we will not reveal which problems are being graded for
correctness until after the assignment has been submitted. The remaining problems will
be graded for completeness (i.e., does it look like there was a good-faith effort to solve the
problem?).

Reading and extra practice problems : Sipser Section 1.2, 1.3. Chapter 1 exercises 1.4, 1.5,
1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.14, 1.15, 1.16, 1.17, 1.19, 1.20, 1.21, 1.22

Problems:

1. Concept check

Complete the assignment “Homework 2 - Concept Check” on Gradescope.

2. Closure of the class of regular languages under Substring

Let Γ = {0, 1}. From the previous homework, recall the function Substring that acts
on languages K over Γ:

Substring(K) := {w ∈ Γ∗ | there exist a, b ∈ Γ∗ such that awb ∈ K}

(a) Consider the NFA over Γ with state diagram:

q0start q1

0

1

1

We’ll call the language recognized by the NFA above C.

Fill in the blanks below. That is, for each item, you’ll either fill in a specific string and
a justification that refers back to the relevant definitions, or you’ll write “impossible”
for the first part of the sentence and justify why it’s impossible to find such an
example referring back to the relevant definitions.

• An example of a string over Γ that is in C and is in Substring(C) is
because

• An example of a string over Γ that is in C and is not in Substring(C) is
because

• An example of a string over Γ that is not in C and is in Substring(C) is
because

• An example of a string over Γ that is not in C and is not in Substring(C) is
because

(b) Prove that the class of regular languages is closed under the Substring operation.
Namely, give a general construction that takes an arbitrary NFA and constructs an
NFA that recognizes the result of applying Substring to the language recognized
by the original machine. You can describe your construction in words and/or draw
a picture to illustrate your construction. You do not have to write down a formal
specification.

(c) Draw the state diagram of an NFA over Γ that recognizes Substring(C) (for C the
language from part (a) of this problem), using your construction from part (b) of
this problem, or manually constructing it. Describe the computation(s) of this NFA
for each of the sample strings you gave in part (a).

3. Bubble sort is regular?

For any string w := w1w2 · · ·wn ∈ Σ∗ with |w| := n symbols, define the function that
swaps the ith and (i+ 1)st symbols:

SWAPi(w) = w1 · · ·wi−1wi+1wiwi+2 · · ·wn

For a language L with alphabet Σ = {0, 1}, we can now define the following languages:

Sorted(L) := {w ∈ L | for all i ∈ {1, 2, . . . , |w| − 1}, wi ≤ wi+1}
Bubble(L) := Sorted(L) ∪ {w ∈ Σ∗ | exists i for which SWAPi(w) ∈ L and wi < wi+1}

For example, if the string 001 ∈ L, then 001 ∈ Sorted(L) because the symbols (which
we are interpreted as integers) are in sorted order. Similarly, if 010 ∈ L, then 010 ̸∈
Sorted(L) since the symbols are not sorted from left to right.

The motivation for the Bubble function is Bubble sort, one of the most basic algorithms
for sorting a list. The algorithm works by iteratively swapping adjacent pairs of items
that are out of order. The Bubble function is meant to simulate one of these swaps.
For example, if 010 ∈ L, then 001 ∈ Bubble(L) since we can get from 010 to 001 by
swapping the last two symbols.

2

https://en.wikipedia.org/wiki/Bubble_sort

(a) Prove that Sorted(L) is regular whenever L is regular. You may use any techniques
shown in class or homework to do so. Hint: there is a very short proof using the
closure properties of regular languages.

(b) [Optional, not for credit] Show that Bubble(L) is regular whenever L is regular. Do
this by describing an NFA that recognizes Bubble(L) given a DFA that recognizes
L. Simply describe in words how your NFA works. It may help to draw a picture to
showcase your construction, but you do not have to write down a formal specification.

Note: This is a bit tricky to write down, but the central idea is common to many
NFA constructions of regular languages. It’s useful practice to think about this even
if you choose not to write it down.

(c) Given that L = {010101}, list all of the elements in the languages Bubble(L),
Bubble(Bubble(L)), Bubble(Bubble(Bubble(L))).

(d) Find the error in the following proof:

i. L = {(01)n | n ∈ N} is a regular language.

ii. Every element of L has the same number of 0’s as 1’s.

iii. Bubble(L) is regular, so Bubble(Bubble(· · · (Bubble(L)) · · ·)) is regular.
iv. Iteratively applying Bubble sorts L, so we get {0n1n | n ∈ N} is regular.

List each line which is wrong and/or misleading and describe why.

Note: The final line is incorrect because the language {0n1n | n ∈ N} is not regular.
You do not have to prove this fact.

4. Deciphering regular expressions

For this question, let’s fix the regular expression

R = 0∗(1 ∪ 10)∗

For each choice of strings of length 3, a, b, c ∈ {0, 1}3 we can define the regular expression:

Xa,b,c = 0(a ∪ b ∪ c)∗

(a) Give a plain English explanation for the language defined by regular expression R.
This continues a theme from Problem 1—before trying to prove formal statements
about a specific regular expression, it’s often good to try to translate it into a form
that is more easy to reason about. Typically speaking, the shorter and more concise
your plain English description is, the more useful it will be in reasoning about the
language.

(b) Suppose a = 000, b = 001, c = 011 so

Xa,b,c = 0(000 ∪ 001 ∪ 011)∗

Show that L(R) ̸⊆ L(Xa,b,c) by giving some string in L(R) which is not in L(Xa,b,c),
and justifying this choice referring back to relevant definitions.

3

(c) More generally, prove that
L(R) ̸⊆ L(Xa,b,c)

for all possible strings a, b, c ∈ {0, 1}3. Hint: What are the possible lengths of strings
in L(R1) (and why does this help)?

(d) Give a specific example of three distinct strings a, b, c ∈ {0, 1, 2}3 such that

L(Xa,b,c) ⊆ L(R)

Briefly justify your answer by explaining how an arbitrary element of L(Xa,b,c) is
guaranteed to be an element of L(R).

(e) Give a specific example of three distinct strings a, b, c ∈ {0, 1, 2}3 such that

L(Xa,b,c) ̸⊆ L(R)

Briefly justify your answer by giving a counterexample string that is in L(Xa,b,c) and
is not in L(R) (and explaining why using relevant definitions).

5. It can be hard to give a good complement

For any language L ⊆ Σ∗, recall that we define its complement as

L := Σ∗ − L = {w ∈ Σ∗ | w /∈ L}

That is, the complement of L contains all and only those strings which are not in L.
Our notation for regular expressions does not include the complement symbol. However,
it turns out that the complement of a language described by a regular expression is
guaranteed to also be describable by a (different) regular expression. For example, over the
alphabet Σ = {0, 1}, the complement of the language described by the regular expression
Σ∗0 is described by the regular expression ε ∪ Σ∗1 because any string that does not end
in 0 must either be the empty string or end in 1.

For each of the regular expressions R over the alphabet Σ = {0, 1} below, write the
regular expression for L(R). You may use only use the following operations: union,
concatenation, and Kleene star.

Briefly justify why your solution works by giving plain English descriptions of the language
described by the regular expression and of its complement. An English description that
is more detailed than simply negating the description in the original language will likely
be helpful in the justification.

(a) (ΣΣ)∗

(b) Σ∗11Σ∗

(c) 0∗10∗10∗

4

