
CSE 190 / Math 152 - Introduction to Quantum Computing
Homework 1
Due Tuesday, April 8th, 1:30pm

Instructions:
It is highly recommended (though not required) that you type your answers. It is your

responsibility to make any handwriting clear and legible for grading. A LaTeX template for
the homework is provided on Canvas. For ease of grading, please start each new problem on
a separate page.

For many of the problems below, I ask you to “prove” some fact. In general in this class,
there is no specific structure of a proof that I am looking for. Most of the proofs of the
identities below can be shown by just computing two quantities and showing that they are
evidently the same.

We will only be grading some of the problems below for correctness. However, because
all of the concepts are important, we will not reveal which problems are being graded for
correctness until after the assignment has been submitted. The remaining problems will
be graded for completeness (i.e., does it look like there was a good-faith effort to solve the
problem?).

Problems:

1. Concept check

Complete the assignment “Homework 1 - Concept Check” on Gradescope. It consists of
a few multiple choice questions that test some of the basic concepts we’ve learned in the
class. A detailed explanation will appear if you’ve gotten the answer correct. The score
you get on this part of the assignment will contribute to your homework grade, but you
have unlimited attempts to get the right answer.

2. Complex numbers fundamentals

Quantum mechnical systems are described by vectors of complex numbers. Therefore, it
is important to review some important properties of complex numbers. We will use the
symbol R to denote the set of all real numbers and the symbol C to denote the set of all
complex numbers. That is,

C = {x+ iy | x, y ∈ R and i2 = −1}

For complex number α = x+ iy, we say that x is the real part of α and y is the imaginary
part of α.

(a) Complex conjugate: for every complex number α = x+ iy, we define its complex
conjugate as α∗ := x − iy. As a note of warning, we will mostly write the complex
conjugate as α∗, but it is also common to see it written as α. Let α, β ∈ C be any
two complex numbers. Prove the following two identities:

i. (αβ)∗ = α∗β∗

ii. (α + β)∗ = α∗ + β∗
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(b) Magnitude: As shown on the right, we can
think of a complex number α = x + iy as a
vector in 2-dimensional space, where the real
and imaginary parts are the two components.
The absolute value or magnitude of α, which
we denote by |α|, is just the length of this vec-
tor. That is, |α| =

√
x2 + y2. real axis
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α = x+ iy

Once again, let α, β ∈ C be arbitrary complex numbers. Prove the following facts:

i. |α| =
√
αα∗.

ii. |αβ| = |α| · |β|. In other words, the magnitude of the product of two complex
numbers is the product of their magnitudes.

iii. α = 0 if and only if |α| = 0. In other words, the magnitude of a complex number
is 0 exactly when the complex number is 0.

3. Linear algebra fundamentals

The following problems are intended to be a review of what you’ve learned in a previous
linear algebra class (Math 18 or similar). At some level, quantum computation consists
entirely of multiplying a vector by a matrix. Therefore, these concepts need to become
second nature.

A complex matrix A ∈ Cn×m is a rectangular array of complex numbers with n rows and
m columns. We denote by Ai,j the entry at row i and column j.

(a) Matrix multiplication: Let A ∈ Cn×m and B ∈ Cm×p be complex matrices. We
define the product of these two matrices AB to be the n×p matrix such that (i, j)th
entry is (AB)i,j =

∑m
k=1Ai,kBk,j. We can extend matrix multiplication to complex

vectors v ∈ Cn by thinking of v as a n× 1 matrix.

i. Prove that matrix multiplication is not commutative. Namely, give an example
of 2× 2 matrices A and B such that AB ̸= BA.

ii. Prove that matrix multiplication is distributive. That is, you should show that
A(B + C) = AB + AC for any matrices A ∈ Cn×m, B ∈ Cm×p, C ∈ Cm×p.

(b) Matrix inverse: The inverse of a matrix A ∈ Cn×n (if it exists) is the unique matrix
A−1 such that AA−1 = A−1A = I. Here, I is the n × n identity matrix, which has
1’s along the diagonal and 0’s everywhere else. If matrix A has an inverse, we say
that it is invertible.

i. Not all matrices are invertible. For example, the matrix which is 0 everywhere
can’t have an inverse. Give an example of a 2× 2 matrix A such that A is not
the all-zeros matrix and yet A still doesn’t have an inverse.

ii. True/False: If A2 = A, then A is invertible. Give a short explanation.

iii. True/False: If A2 = I, then A is invertible. Give a short explanation.

(c) Conjugate transpose: Given any n ×m matrix A, we define its transpose AT to
be the m × n matrix where the rows and columns have been swapped. Formally,
(AT )i,j = Aj,i. We define its conjguate A∗ to be the n × m matrix where we take
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the complex conjugate of each entry, that is, (A∗)i,j = A∗
i,j. We define its conugate

transpose A† to be the m × n matrix where we have taken both the tranpose and
the conjugate of A, that is, A† = (A∗)T = (AT )∗. Once again, we can extend these
operations to complex vectors v ∈ Cn by thinking of v as n × 1 matrix. That is, v
is a column vector, but v† is a row vector.

i. Let A ∈ Cn×m be a matrix and v ∈ Cn and w ∈ Cm be vectors. Which of the
following are valid linear-algebraic products: vA, v†A, wTA, Aw, Av†?

ii. Prove that (AB)† = B†A† for any matrices A,B ∈ Cn×n.

iii. Prove that if A ∈ Cn×n is invertible, then A† is invertible.
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