
CSE 200 - Computability and Complexity
Homework 1
Due Wednesday, October 18, 11:59pm

Instructions: You may work individually or in a team of 2 people. You may switch teams for
different assignments. Please ensure your name(s) and PID(s) are clearly visible on the first
page of your submission, and then upload the PDF to Gradescope. If working in a group,
submit only one submission per group: one partner uploads the submission through their
Gradescope account and then adds the other group member to the Gradescope submission
by selecting their name in the “Add Group Members” dialog box. You will need to re-add
your group member every time you resubmit a new version of your assignment.

It is highly recommended (though not required) that you type your answers. It is your
responsibility to make any handwriting clear and legible for grading. For ease of grading,
please start each new problem on a separate page.

Problems:

1. Halt! Who goes there? We proved in lecture that HALT is not computable by
Turing Machines (TMs), where HALT : {0, 1}∗ × {0, 1}∗ → {0, 1} is defined by

HALT(⟨M⟩, x) =

{
1 if M(x) halts

0 otherwise
,

where ⟨M⟩ is an encoding of the TM M . By replacing M with other computational
models, the function naturally generalizes. Your goal is to prove whether or not the
halting problem is computable when M is some other computational model.

In other words, you are to determine if the problem is computable using our usual
definition of a k-tape machine, but the input to the halting function is an encoding
of one of the Turing machine variants below. You may assume that nothing strange
happens with the encodings for all variants—e.g., determining if an encoding is valid
is computable.

(a) TMs where each work tape has ℓ ≥ 1 different heads.

(b) TMs where the output tape is write only, input tape is read only, and only the
first n entries of each non-output tape may be used, where n is the length of the
input.

2. Go bananas! Define the banana function B : {0, 1}∗ → {0, 1} by

B(x) =

{
1 The first 42 bits of x spell “banana” in ASCII

0 otherwise
.

Prove that determining whether a given TM M computes the banana function is not
computable. (You may not use Rice’s theorem if you are familiar with it.)
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3. Bootstrapping complexity theorems Let T1, T2, g : N → N be nondecreasing time-
constructible1 functions. Prove the following theorem:2

If TIME(T1) = TIME(T2), then TIME(T1 ◦ g) = TIME(T2 ◦ g).

4. Extra space isn’t always helpful In this question, you will prove the following
surprising theorem: SPACE(o(log log n)) = SPACE(O(1)). That is, if you have less than
log log n memory, you might as well not use any memory at all. This was originally
proved in the paper Hierarchies of memory limited computations (Stearns, Hartmanis
and Lewis, 1969). Below is a guided proof, where you will need to prove various claims
along the way. You may look at the original paper if that helps you.

Let M be a 3-tape TM which has a read-only input tape, a write-only3 output tape, a
read-write work tape. By assumption, M uses S(n) = o(log log n) work memory. We
can make two simplifying assumption about M without loss of generality: M halts
on all inputs; M cannot write blank symbols on the work tape. The latter condition
implies that at every given point in time, the work tape content is

a1 a2 . . . ak−1 ak . . .

where is a blank symbol, and a1, . . . , ak are non-blank symbols.

For an input x ∈ {0, 1}∗ define s(x) to be the number of non-blank symbols on the
work tape at the end of the computation of M(x). By the assumption, s(x) ≤ S(|x|) =
o(log log |x|) for all inputs x. Define the work configuration to be a snapshot4 of the
TM that contains the content of the work tape, the location of the head in the work
tape, and the TM state. Notably, this snapshot does not contain the location of the
head on the input tape.

The proof will require us to track all the work configurations obtained while running
M(x). To this end, let W (x) denote the set of all work configurations obtained while
running M(x).

(a) Prove that |W (x)| = o(log n) for all x ∈ {0, 1}n.

Given input x ∈ {0, 1}n and coordinate5 i ∈ [n], define W (x, i) ⊆ W (x) to be the set
of all work configurations of M(x) for which the input tape head is at position i.

(b) Prove that for any x ∈ {0, 1}n, the number of distinct W (x, i) is o(n). That is,
|{W (x, i) | i ∈ [n]}| = o(n). Note that this is better than the trivial bound of n.

1Recall a function g : N → N is time constructible if g(n) ≥ n and there is a TM that on input 1n outputs
g(n) (say, suitably encoded in binary) in time O(g(n)).

2Here we use “◦” for function composition.
3In class, we said that the output tape was read-write. In general, this distinction doesn’t matter, but in

these small space regimes we don’t want the Turing machine to sneak computation onto the output, so we
will just stipulate that it is write-only.

4See Figure 2.2 of the textbook for the idea of a snapshot. However the snapshot in that diagram is not
exactly the type used here since it does not contain the location of the head on the work tape.

5Here, and throughout, we use [n] do denote the set {1, . . . , n}.
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(c) Prove that there exists n0 ≥ 1 such that the following holds: for any n ≥ n0 and
any x = x1 · · ·xn ∈ {0, 1}n, there exist i < j for which W (x, i) = W (x, j) and
xi = xj.

Let B denote the maximum amount of memory used by any input of length at most
n0. That is, B = max{s(x) | x ∈ {0, 1}n, n ≤ n0}.

(d) Prove that unless M uses O(1) memory for all inputs of all lengths, there must
be input length n > n0 and an input x ∈ {0, 1}n for which s(x) > B.

Fix the first (minimal) such n∗ and x ∈ {0, 1}n∗
. By (c), there exist coordinates i < j

for which W (x, i) = W (x, j) and xi = xj. Define a new word:

y = x1 · · ·xixj+1 · · · xn∗ ∈ {0, 1}n∗−j+i

To conclude the proof, we will show that M(y) never halts, which is a contradiction.

(e) Prove that W (y, k) ⊆ W (x, k) for k ∈ [i] and W (y, i + k) ⊆ W (x, j + k) for
k ∈ [n∗ − j].

Hint: Reason by induction on the number of steps in the computation. The only
places where the work configuration of M(y) and M(x) might diverge is in the
crossover between xi and xj+1. Explain why the condition in (c) guarantees that
it doesn’t.

(f) Prove that s(y) < s(x).

(g) Prove that M(y) never reaches a work configuration where the state is qhalt, the
halting state. For this, note that when M(x) halts, it used s(x) memory.

(h) Complete the proof.
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