
CSE 200 - Computability and Complexity
Homework 2
Due Wednesday, November 1, 11:59pm

Instructions: You may work individually or in a team of 2 people. You may switch teams for
different assignments. Please ensure your name(s) and PID(s) are clearly visible on the first
page of your submission, and then upload the PDF to Gradescope. If working in a group,
submit only one submission per group: one partner uploads the submission through their
Gradescope account and then adds the other group member to the Gradescope submission
by selecting their name in the “Add Group Members” dialog box. You will need to re-add
your group member every time you resubmit a new version of your assignment.

It is highly recommended (though not required) that you type your answers. It is your
responsibility to make any handwriting clear and legible for grading. For ease of grading,
please start each new problem on a separate page.

Problems:

1. NP-complete? For any undirected graph G, let ω(G) denote its clique number—i.e.,
the number of vertices in the largest clique of G. Consider the following languages:

Clique := {⟨G, k⟩ | ω(G) ≥ k}
BiggerClique := {⟨G,H⟩ | ω(G) > ω(H)}

In class, we showed that Clique is NP-complete.

(a) Prove that BiggerClique is NP-hard by reduction from Clique. That is, show
Clique ≤p BiggerClique.

(b) Give some intuition for why BiggerClique might not be NP-complete. Your
answer can be informal.

(c) Suppose there is a special kind of algorithm that can solve Clique in constant
time. Such an algorithm is usually called an “oracle,” and running the oracle on
some input is called “querying” the oracle. Show that there is a polynomial-time
algorithm that can solve BiggerClique when it has the ability to query the
Clique oracle polynomially many times.

The class of languages solvable by algorithms of the type in (c) is usually denoted as
PNP since there is polynomial-time machine with access to an oracle that can solve an
NP-complete problem (in this case, Clique). In other words, in this problem, we have
shown that BiggerClique is NP-hard and that BiggerClique ∈ PNP.

As it turns out, BiggerClique is actually complete for the complexity class PNP[log],
that is, the class of languages which can be solved by a polynomial time machine that
can make logarithmically many queries to an NP oracle. As a challenge (not graded),
improve your algorithm in (c) to only use O(log n) queries, where n is the maximum
number vertices in the input graphs G and H.

1



2. A different kind of constraint satisfaction problem Let’s define a variant of
3SAT called 3NAE-SAT where the NAE stands for “not all equal.” Recall that in
3SAT, we want each clause of our Boolean formula to contain at least one true literal.
In 3NAE-SAT, we require that within a given clause the literals are neither all false
nor all true. For example, the clause NAE(x1, x2, x3) is satisfied under an assignment
where x1, x2, x3 are all true, but not satisfied under an assignment where x1 and x2

are true, but x3 is false. A 3NAE-SAT formula is satisfiable if all of its clauses are
satisfiable. Once again, the “3” means that each clause has at most 3 literals. Let

3NAE-SAT = {φ | φ is a satisfiable 3NAE-SAT formula}.

We will show that 3NAE-SAT is NP-hard by a reduction from 3SAT. It will be simpler
two break the reduction into two steps by using an intermediate problem. First, we
need to show that this approach is consistent with our notion of reduction.

(a) Let A,B,C be any languages. Show that if A ≤p B and B ≤p C, then A ≤p C.
In other words, polynomial-time Karp reductions are transitive.

We now define the intermediate language 3NAE-SAT-CONST which is the same as the
language 3NAE-SAT except the clauses can also have the literals T and F which are
always true and false, respectively. Recall that a usual literal corresponding to some
variable can be either true or false.

(b) Prove that 3SAT ≤p 3NAE-SAT-CONST.

(c) Prove that 3NAE-SAT-CONST ≤p 3NAE-SAT.

Notice that combining (b) and (c) with (a) shows 3NAE-SAT is NP-hard.

3. Complexity consequences Prove that if NP = PSPACE then coNP = NP.

4. Bootstrapping NP algorithms for the polynomial hierarchy

Assume that NP ⊆ ∪c≥1TIME(nc logn). Show that for every i ∈ N, there exists a k ∈ N
such that Σi ⊆ ∪c≥1TIME(nc(logn)k).

5. Small space algorithms

Define the language Sum := {x#y#z | x, y, z ∈ {0, 1}∗ and x+ y = z}. The interpre-
tation of the language is that x, y, and z are integers written in binary and we would
like to know if x + y is equal to z. The “#” symbol is used to separate the numbers.
Prove that Sum ∈ L. In other words, Sum is computable in logarithmic space.

2


