
CSE 200 - Computability and Complexity
Homework 3
Due Wednesday, November 15th, 11:59pm

Instructions: You may work individually or in a team of 2 people. You may switch teams for
different assignments. Please ensure your name(s) and PID(s) are clearly visible on the first
page of your submission, and then upload the PDF to Gradescope. If working in a group,
submit only one submission per group: one partner uploads the submission through their
Gradescope account and then adds the other group member to the Gradescope submission
by selecting their name in the “Add Group Members” dialog box. You will need to re-add
your group member every time you resubmit a new version of your assignment.

It is highly recommended (though not required) that you type your answers. It is your
responsibility to make any handwriting clear and legible for grading. For ease of grading,
please start each new problem on a separate page.

Problems:

1. Graph problems in small space

For directed graph G, let distG(s, t) be the length of the shortest path from s to t in
G; or if no such path exists, then distG(s, t) = ∞. Consider the following variant of
the st-connectivity problem where the path must be of some minimal length d ∈ N:

MIN-ST-CON := {(G, s, t, d) | distG(s, t) = d}.

(a) Prove that MIN-ST-CON is in NL.

(b) Prove that MIN-ST-CON is NL-hard. Hence MIN-ST-CON is NL-complete.

2. Games are hard

In this problem, we will reason about the computational complexity of determining
the winner of a game. Specifically, we will consider games that have the following
properties:

• 2-Player: There are two players who alternate taking turns.

• Perfect information: There is no concealed information, each player knows the
set of moves of the other player.

• Finite: Each player has a finite number of moves, and the game is gauranteed
to end after a finitely many turns. Specifically, if the game has input description
of size n, then the players have poly(n) options for each move, and the game ends
after poly(n) moves.

Furthermore, we assume that moves in the game can be computed in polynomial time,
and when the game ends, it is easy to tell who won the game. That is, from the
ending position, there is a polynomial time algorithm that computes who won (either
the player who went first, or the one who went second).

(a) Show that it is possible to determine the winner of such games in PSPACE.

1

It will turn out that most natural games of this kind are, in fact, PSPACE-complete.

Let’s consider one such game called “Cartography”. In this game, the input is a
directed graph G and a starting vertex s. The game begins with a marker at vertex s.
Each turn, the current player moves the marker along one of the outgoing edges from
the current vertex. Importantly, each directed edge can be used at most once for the
entire game. The first player unable to move loses.

Define the language CARTOGRAPHY to be the initial
positions (G, s) such that Cartography played on graph
G with starting marker at vertex s is a win for the first
player.

You will show that CARTOGRAPHY is PSPACE-hard.
In particular, you will prove that

TQBF ≤L CARTOGRAPHY.

Since this reduction is somewhat tricky, I will get you
started. Start with TQBF instance

∃x1∀x2 . . . ∃xn φ(x1, x2, . . . , xn),

where φ is a CNF formula with clauses C1, C2, . . . , Cm.
We map this TQBF instance to an instance of CAR-
TOGRAPHY (G, s) where the first player wins iff the
TQBF instance is satisfied. The graph G will have the
form of the graph on the right, and some of the vertices
are labeled suggestively. The vertex set is exactly cor-
rect, but some edges are missing. Your goal is the finish
the proof.

x1 x1

x2 x2

x3 x3

xn xn

...

· · ·
C1 C2 C3 Cm

(b) Complete the proof that TQBF ≤L CARTOGRAPHY. You should not only
describe the edges missing in the graph above, but also explain why the reduction
is correct and in log-space.

3. PSPACE does not have fixed poly-size circuits

It is widely believed that polynomial-size circuits cannot compute all functions requir-
ing polynomial space, i.e., PSPACE ̸⊆ P/poly. However, this is not known. In this
problem, you will prove a weaker version of this statement: PSPACE ̸⊆ SIZE(nk) for
any fixed k.

For every k, we will construct a language Lk ⊆ {0, 1}∗ with the following two properties:

• Lk ∈ PSPACE.

• There exists nk such that for all n > nk, the language Lk ∩ {0, 1}n ̸⊆ SIZE(nk).

We break the proof into the following pieces:

2

(a) For every n, let Fn be the class of functions f : {0, 1}n → {0, 1} which can be
computed by circuits of size nk. Prove that |Fn| ≤ 2m for m = O(nk+1).

(b) Let t ≥ 1 and fix distinct inputs x1, . . . , xt ∈ {0, 1}n. Prove that there exists
outputs y1, . . . , yt ∈ {0, 1} such that the number of functions f ∈ Fn that satisfy
f(xi) = yi for all i ∈ [t] is at most 2m−t.

(c) Prove that for t = m + 1, there are inputs x1, . . . , xt ∈ {0, 1}n and outputs
y1, . . . , yt ∈ {0, 1} such that any function f : {0, 1}n → {0, 1} which satisfies
f(xi) = yi for all i ∈ [t] must be outside of Fn.

(d) Prove there exists an algorithm that on input 1n finds such inputs and outputs
using poly(m) space.

(e) Complete the proof. That is, describe the language Lk and show why it has the
desired properties.

3

