
CSE 200 - Computability and Complexity
Homework 4
Due Wednesday, November 29th, 11:59pm

Instructions: You may work individually or in a team of 2 people. You may switch teams for
different assignments. Please ensure your name(s) and PID(s) are clearly visible on the first
page of your submission, and then upload the PDF to Gradescope. If working in a group,
submit only one submission per group: one partner uploads the submission through their
Gradescope account and then adds the other group member to the Gradescope submission
by selecting their name in the “Add Group Members” dialog box. You will need to re-add
your group member every time you resubmit a new version of your assignment.

It is highly recommended (though not required) that you type your answers. It is your
responsibility to make any handwriting clear and legible for grading. For ease of grading,
please start each new problem on a separate page.

Problems:

1. The power of gate sets in constant-depth circuits

For families of bounded fan-in circuits, it suffices to consider some canonical gate set
like AND, OR, and NOT. Changing the gate set does not change the computational
power of the circuit. However, when we allow unbounded fan-in gates—i.e., gates that
can have any number of inputs—the choice of our gate set is important.

For every n, define the following gates acting on n Boolean inputs:

PARITY(x1, x2, . . . , xn) =
n∑

i=1

xi (mod 2)

MAJ(x1, x2, . . . , xn) =

⌊
1

2
+

1

n

n∑
i=1

xi

⌋
In other words, the PARITY function outputs 1 if there are an odd number of inputs
which are 1, and the MAJ function (short for “majority”) outputs 1 if there are there
are at least as many 1 inputs as 0 inputs.

In class, we encountered the complexity class AC0, which contains those languages
computable by constant-depth, poly-size circuits with unbounded fan-in AND, OR,
and NOT gates. Let’s define the analogous class LC0 for circuits with PARITY gates
and NOT gates, and TC0 for circuits with MAJ gates and NOT gates. In all classes
above, the circuits have constant depth, are polynomial size, and have gates that can
act on any number of inputs (except NOT, which always acts on a single input).

(a) Show that AC0 and LC0 are incomparable. That is, AC0 ̸⊆ LC0 and LC0 ̸⊆ AC0.
Hint: The output of the PARITY gate is a polynomial (see the explicit formula
above). The output of the NOT gate can also be expressed as a (certain kind of)
polynomial. What does this mean about the output of an LC0 circuit?

(b) Show that TC0 contains both AC0 and LC0. Hint: A useful step is to have wires
in the circuit which are always 1. How can you construct such a wire?
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2. Random Approximate 3SAT

We know from the Cook-Levin theorem that 3SAT is NP-complete. Therefore, it is
unlikely that there is a polynomial-time algorithm to output a satisfying solution to a
3SAT formula (if it exists). Indeed, it is believed that BPP ̸= NP, so it’s also unlikely
that there is a randomized algorithm could output a satisfying assignment with high
probability.

For this problem, let’s relax the notion that an assignment to a 3SAT formula needs
to satisfy all of the clauses. Instead, let’s assume that it only needs to satisfy 6/7ths
of all clauses.

Your goal for this problem is to design a polynomial-time randomized algorithm for the
following problem: given as input a 3SAT formula φ = C1 ∧C2 ∧ · · · ∧Cm where each
clause has exactly three literals (corresponding to three distinct variables), output a
variable assignment satisfying at least ⌊6m/7⌋ clauses with probability at least 99%.

Hint: Don’t try to be too clever with your variable assignment. Let the randomness
in your algorithm do the work.

You may find the following concepts useful for analyzing the correctness of your algo-
rithm:

• Discrete random variable: A random variable X has some value n ∈ Z with
probability Pr[X = n]. The sum of all probabilities is 1:

∑
n Pr[X = n] = 1.

• Expectation: The expectation of X is E[X] =
∑

n n · Pr[X = n]. Expectation
has an important property called linearity: for any random variables X and Y ,
E[X + Y ] = E[X] + E[Y ].

• Markov’s inequality: For any t ≥ 0 and any random variable X which is always
positive (the probability of a negative value is zero), we have Pr[X ≥ t] ≤ E[X]/t.

• Independence: Two random variables X,Y are independent if the value of one
variable does not affect the value of the other variable. That is, for all values
x, y ∈ Z, we have Pr[X = x and Y = y] = Pr[X = x] · Pr[Y = y].
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