
CSE 291 / Math 277 - Quantum Complexity Theory (Fall 2024)
Homework 5
Due Thursday, November 7, 3:00pm

Note: It is highly recommended (though not required) that you type your answers. It is
your responsibility to make any handwriting clear and legible for grading. You may work
with 1-2 other collaborators, but you must write the solutions separately and clearly mark
the names of each person you worked with.

Problems:

1. A majority of quantum query techniques

For any bitstring x ∈ {0, 1}N , we define its majority as the bit that occurs most often:

Maj(x) =

{
1 if |x| ≥ N/2

0 otherwise

where |x| is the Hamming weight of x.

Let’s first establish that there are no efficient query algorithms for Majority by a
reduction from the Or function:

(a) Recall that Or(x) = x1 ∨ · · · ∨ xN has quantum query complexity Ω(
√
N) by the

Grover lower bound. Show that a quantum query algorithm for Majority implies
a query algorithm for Or, and therefore, conclude the quantum query complexity
of Majority is Ω(

√
N).

In fact, Majority is even harder than Or. We will show this via both the polynomial
and adversary methods.

(b) Show that the quantum query complexity of Majority is Ω(N) by the polynomial
method. You will probably want to use the following theorem:

Theorem 1 ([Paturi 92]) Let p : R → R be a real polynomial. Suppose p(z) ∈
[0, 1] on all integer points z ∈ {0, 1, . . . , N}. Then, there exists a universal con-
stant C ∈ R+ such that

deg(p) ≥ max
z∈[0,N ]

(
|p′(z)|

C(1 + |p′(z)|)
√
z(N − z)

)
(c) Show that the quantum complexity of Majority is Ω(N) by the adversary method.

2. Sample complexity of learning stabilizer states

Let |ψ⟩ be an unknown n-qubit stabilizer state (i.e., a state prepared by applying a
Clifford circuit to |0n⟩). Suppose would like to make some measurements to determine
|ψ⟩ with high probability using as few copies of the state as possible. A single copy
of |ψ⟩ is clearly insufficient—consider the case where we’re trying to distinguish |0⟩
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https://cseweb.ucsd.edu/~paturi/myPapers/pubs/Paturi_1992_stoc.pdf


and |+⟩. In fact, for general quantum states, Ω(2n) copies of the state are needed.
However, for stabilizer states, it turns out that O(n) copies are sufficient!

We will use a measurement protocol called “Bell sampling”. Let’s try to derive some
of its properties. First, define the two-qubit Bell basis:

|σ00⟩ := |00⟩+|11⟩√
2

|σ01⟩ := |01⟩+|10⟩√
2

|σ10⟩ := |00⟩−|11⟩√
2

|σ11⟩ := |01⟩−|10⟩√
2

One can check that this is indeed an orthonormal basis. For a two-qubit state |φ⟩,
measuring in this basis means you get the outcome |σij⟩ with probability |⟨σij|φ⟩|2. To
perform Bell sampling, we will measure pairs of qubits of the state |ψ⟩ ⊗ |ψ⟩ in the
Bell basis. That is, for all i ∈ {1, . . . , n}, we measure the ith qubits of the first and
second copy of |ψ⟩ in the Bell basis.

(a) Show that the probability of measuring the |σ00⟩ outcome for all the qubit pairs

is equal to 1
2n

∣∣∣∑x∈{0,1}n ⟨x|ψ⟩
2
∣∣∣2.

Notice that we can rewrite this probability using the fact that∑
x∈{0,1}n

⟨x|ψ⟩2 =
∑

x∈{0,1}n
⟨x|ψ⟩ (⟨ψ|x⟩)∗ = tr(|ψ⟩⟨ψ∗|) = ⟨ψ∗|ψ⟩ .

Of course, this is just the probability of a single outcome. We have to consider the
remaining outcomes. We will use the following nice observation about the Bell basis—
namely, every basis element is related to |σ00⟩ by a single-qubit Pauli operation:

|σ01⟩ = (X ⊗ I) |σ00⟩ , |σ10⟩ = (Z ⊗ I) |σ00⟩ , |σ11⟩ = i(Y ⊗ I) |σ00⟩

Since we can identify each Bell basis state with a Pauli operation (i.e, one of I, X,
Y , or Z), we can identify a Bell sampling measurement with a Pauli string P =
P1 ⊗ P2 ⊗ · · · ⊗ Pn. The Pauli Pi corresponds to the Bell basis measurement result on
the ith qubit pair.

(b) Show that the probability of measuring the Pauli string P ∈ {I,X, Y, Z}⊗n using
Bell sampling is equal to 1

2n
|⟨ψ∗|P |ψ⟩|2.

We’d like to say that the P we sample is a stabilizer of |ψ⟩, but that’s not quite right.
Instead, we have the following fact:

(c) Show that ⟨ψ|P |ψ⟩ = 0 for all Pauli strings P not in the stabilizer group of |ψ⟩
(i.e., neither P nor −P is in the stabilizer group).

Unfortunately, the Bell sampling outcome gives us the conjugate of |ψ⟩ on one side.
To continue, we’ll need the following useful fact (proof left as an exercise):

Fact 1 For every n-qubit stabilizer state |ψ⟩, there exists a Pauli string Q ∈ {I, Z}⊗n

such that Q |ψ∗⟩ = |ψ⟩.

2



Note of warning: the Q used in the fact above need not be a stabilizer of |ψ⟩. We now
have all the tools we need to finish the stabilizer learning algorithm. You’re only being
asked to solve the first step.

(d) Prove that with high probability, O(n) Bell samples suffice to construct a complete
generating set for the stabilizer group of |ψ⟩ up to phase.

To finish the algorithm, it suffices to determine the signs on the stabilizer group ele-
ments. To do this, for each stabilizer generator P measure a single copy of the state
|ψ⟩ in the eigenbasis of P . This will determine the sign. Once we have learned all the
stabilizer generators and their phases, we have uniquely determined the state |ψ⟩.
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