
CSE 291 / Math 277 - Quantum Complexity Theory (Fall 2024)
Homework 6
Due Thursday, November 14, 3:00pm

Note: It is highly recommended (though not required) that you type your answers. It is
your responsibility to make any handwriting clear and legible for grading. You may work
with 1-2 other collaborators, but you must write the solutions separately and clearly mark
the names of each person you worked with.

Problems:

1. Postselection is powerful

Quantum measurements are inherently probabilistic, but what if they weren’t? That
is, what is the power of quantum mechanics when we get to choose or postselect which
measurement outcome we get, regardless of how small the probability is of actually
measuring that outcome. In this problem, we will explore the computational power of
such a model of quantum computation. While this model of computation may sound
somewhat strange, we will see later that it turns out to be surprisingly relevant to the
story of quantum advantage.

Let’s try to formally define a quantum postselection class. First, let’s fix a gate set of
“reasonable” gates, say, with algebraic entries.

Postselected Bounded Error Quantum Polynomial Time (PostBQP)
The class of languages L such that there is a poly-uniform family of polynomial-size
quantum circuits {Qn}∞n=1 such that for all x ∈ {0, 1}n:

(a) The probability of measuring |1⟩ on the first qubit of Qn |x⟩ |0 · · · 0⟩ is nonzero.
(b) If x ∈ L, then conditioned on the first qubit being |1⟩, the probability of measuring

|1⟩ on the second qubit is at least 2/3.

(c) If x ̸∈ L, then conditioned on the first qubit being |1⟩, the probability of measuring
|1⟩ on the second qubit is at most 1/3.

We will eventually show that this class is extremely powerful, equal to the complexity
class PP. For now, let’s warm up with a simpler inclusion:

(a) Show that NP ⊆ PostBQP.

Hint: Show that you can find a solution to any polynomially computable function
f : {0, 1}n → {0, 1}. It should be intuitive that if you can postselect on a par-
ticular measurement outcome, then you should be able to postselect on seeing a
solution to f . Fitting this into the definition of PostBQP requires some care since
your postselection must always succeed (c.f., Condition (a) in the definition of
PostBQP).

Our goal for the remainder of this problem is to show that in fact PostBQP = PP. The
inclusion PostBQP ⊆ PP follows immediately from our previous proof that BQP ⊆ PP,
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so let’s focus on the other direction. We will use the fact that a complete problem for
PP is determining if some polynomially computable function f : {0, 1}n → {0, 1} has
fewer than 2n−1 solutions. Let s ∈ N be the number of solutions to f . It will be useful
in the proof to assume that s > 0, so let’s make that assumption (though this is not
required).

We start by preparing the state

1√
2n

∑
x∈{0,1}n

|x⟩ |f(x)⟩ .

(b) Write the single-qubit state |ψ⟩ on the second register you obtain after applying
Hadamard gates to the first n qubits and postselecting on them being the state
|0n⟩. The amplitudes on |0⟩ and |1⟩ should be in terms of s and n. Remember
that |ψ⟩ should be properly normalized.

Note: This procedure might seem somewhat strange since we’re postselecting on
n qubits rahter than a single qubit as indicated in the defintion PostBQP. Notice,
however, that we could apply an OR gate to the first n qubits, and postselect on
the output of that OR function being |0⟩.

Our next step will be to prepare the state α |0⟩ |ψ⟩+ β |1⟩H |ψ⟩ for some α, β ∈ R+ to
be chosen later. Here, H is the usual Hadamard gate.

(c) Staring with the state α |0⟩ |ψ⟩ + β |1⟩H |ψ⟩, show that postselecting the second
qubit on being |1⟩ yields the state

∣∣φβ/α

〉
:=

αs |0⟩+ (β/
√
2)(2n − 2s) |1⟩√

α2s2 + (β2/2)(2n − 2s)2

on the first qubit.

Our goal will be to use the
∣∣φβ/α

〉
state to determine whether or not s < 2n−1. Let’s

first consider the case where s < 2n−1. The claim is now that a careful setting of α and
β will make the

∣∣φβ/α

〉
state close to |+⟩. To get some intuition, notice that setting

β = 0 implies
∣∣φβ/α

〉
= |0⟩ and setting α = 0 implies

∣∣φβ/α

〉
= |1⟩. For intermediate

values of α and β, notice that the amplitudes on the |0⟩ and |1⟩ state are positive since
2n − 2s > 0 whenever s < 2n−1. In other words, as we tune β from 0 to 1, the state
must cross over the |+⟩ state.

(d) Suppose that s < 2n−1. Show that there exist an i ∈ {−n, n} such that when
β/α = 2i, we have

|⟨+|φ2i⟩| ≥
1 +

√
2√

6
≥ 0.985.

Hint: As we increase i, the worse case distance from |+⟩ happens when |⟨+|φ2i⟩| =
|⟨+|φ2i+1⟩|. This occurs when

|φ2i⟩ = γ0 |0⟩+ γ1 |1⟩
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for some γ0, γ1 > 0 with γ20 + γ21 = 1 and

|φ2i+1⟩ = γ0 |0⟩+ 2γ1 |1⟩√
γ20 + 4γ21

= γ1 |0⟩+ γ0 |1⟩

What must γ0 and γ1 be?

(e) Suppose that s ≥ 2n−1. What is the largest that |⟨+|φ2i⟩| could possibly be for
any i?

Hint: Think about the sign of the amplitude on the |1⟩ state on any |φ2i⟩.
(f) Put everything together. That is, show there is a polynomial-time quantum al-

gorith with postselection that can determine if s < 2n−1. Hence, PP ⊆ PostBQP.

Hint: You may have to run the algorithm for several |φ2i⟩.
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