
Quantum Complexity Theory

Lecture Notes

Daniel Grier

Contents

Contents 1

1 Foundations of Quantum Mechanics 3
1.1 The basics of quantum computation . 3
1.2 Multi-qubit quantum computation . 5
1.3 Dirac notation and inner products . 9
1.4 Mixed states . 10
1.5 Noteworthy quantum phenomena . 14

2 Computation with Quantum Circuits 16
2.1 The quantum circuit model . 16
2.2 The complexity class BQP . 21

Bibliography 22

A Classical complexity 23
A.1 Complexity classes for decision problems . 23

1

CONTENTS 2

Preamble

These lecture notes derive from a sequence of scribe notes taken from the Fall 2022 iteration
of CSE 291 / Math 277A (Quantum Complexity Theory). This document represents a contin-
ual and iterative process to bring those notes into a more cohesive whole. Any mistakes can
be assumed to have been introduced by me. Please feel free to email me (dgrier@ucsd.edu)
if you notice any.

These course notes are written for graduate students with a strong mathematical back-
ground, but not necessarily any previous experience with quantum computing. Some pre-
vious exposure to complexity theory will be extremely useful. I recommend the excellent
Arora-Barak textbook for those looking to brush up on that background.

Overview

The goal of these notes is to rigorously compare, using the tools of complexity theory, the
power of quantum and classical computers. We will see some settings in which quantum
computers outperform their classical counterparts and some settings in which quantum com-
puters are no better than brute force classical approaches. Given the recent explosion of
progress in actually building a quantum computer, it is becoming more important than ever
that we understand the difference in the quantum and classical worlds and what they al-
low us to compute. The exploration in these notes will take us to the forefront of quantum
computing research, where we’ll look at the complexity-theoretic foundations of these recent
experiments.

https://danielgrier.com/courses/CSE291/Fa22/
http://theory.cs.princeton.edu/complexity/book.pdf

Chapter 1

Foundations of Quantum Mechanics

Before we can reason about the power of quantum computers, we must obviously first under-
stand what kinds of computations they unlock. We will start with the pure foundations: What
is a quantum state, and what kinds of operations can you perform on that state?

From there, we will define a computational model (analogous to the classical Turing ma-
chine) that captures the essence of a quantum computer.

1.1 The basics of quantum computation

What is the state of a quantum system? Let’s start by analogy to one of the simplest classi-
cal objects—a biased coin. Since it will be convenient later, let’s suppose the coin has two
sides, corresponding to a 0-outcome and a 1-outcome (perhaps more traditionally these two
outcomes would be called “heads” and “tails”).

To be even more concrete, let’s suppose the coin is biased so that it lands on the 0-outcome
with 30% probability and on the 1-outcome with 70% probability. Suppose we flip the coin
in the air, and we want to describe the probability distribution over outcomes when the coin
lands. We could represent it by the length-2 vector:(

0.3
0.7

)
← Probability of 0-outcome
← Probability of 1-outcome

In some sense, this represents the “state” of the coin if we know the coin has landed on one
side or the other, but we have not yet looked at which outcome.

If we were to look at the outcome, then the state of the system immediately changes to
whichever outcome we saw:(

1
0

)
← 0-outcome

with certainty or
(
0
1

)
← 1-outcome

with certainty

since there is no ambiguity in the outcome once we’ve observed it.
Stepping back a bit, let’s look at the full description of states and operations in this classical

probability framework. First, notice that instead of a coin with just 2 outcomes, we could have
as many outcomes as we like (think of a biased die); but for simplicity, let’s assume there are
only finitely many. In a system with d outcomes, the state of the system would be described

3

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 4

by a vector of d probabilities. The key property of this vector is that each probability is non-
negative and all probabilities sum up to 1.

The set of operations that we could perform on this system are the set of operations that
take probability vectors to probability vectors. Specifically (and we will see how this changes
in the quantum setting soon), these operations preserve the ℓ1-norm of the vector, where the
ℓ1-norm of vector v = (v1, v2, . . . , vd) ∈ Cd is defined as

∥v∥1 :=
d∑
i=1

|vi|

Qubits

Let’s now complete the analogy of the classical probabilistic bit discussed above with the
quantum variant called a qubit. Instead of assigning two outcomes (0 and 1) a probability, we
instead assign them a complex number called an amplitude. We represent a qubit as a column
vector in C2. For example, (

1√
2
i√
2

)
← Amplitude on 0-outcome
← Amplitude on 1-outcome

Let’s now discuss what it means to “look” at a quantum state, which is called measurement in
the quantum setting. The measurement axiom of quantum mechanics, called the Born rule,
says that you see a particular outcome with the squared magnitude of the amplitude. For
the example above, this means we’d see the 0-outcome with probability |1/

√
2|2 = 1/2 and

the outcome will be 1 with probability |i/
√
2|2 = 1/2. Once again, when you observe this

outcome the qubit collapses to whichever outcome you observed.
From the Born rule, we can derive a condition on the amplitudes of a qubit. Suppose

we have a qubit with amplitudes α, β ∈ C. The Born rule states that we see the outcome
with probability |α|2 and |β|2, respectively. Since there are only two outcomes, these two
probabilities must sum up to 1 (i.e., we must see either theO or 1 outcome when we measure).
We arrive at the following condition for the amplitudes of a qubit: |α|2 + |β|2 = 1.

Stepping back again, let’s give a complete mathematical description of a quantum state.
We can generalize to quantum state with d outcomes (called a qudit for d > 2), which is
represented by a length-d complex vector. The key property of this vector is that the squared
magnitudes of the amplitudes sum to 1. In other words, the ℓ2-norm of the vector is 1. The
ℓ2-norm of any v = (v1, v2, . . . , vd) ∈ Cd is defined as

∥v∥2 :=

√√√√ d∑
i=1

|vi|2.

It is an amazing fact that moving from the classical to the quantum setting is in some sense
just moving from the ℓ1 to the ℓ2 norm.

Unitary matrices

Because the set of valid quantum states must have unit ℓ2-norm, the set of viable quantum
operations must preserve the ℓ2-norm of the state. However, not all such operations are valid.

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 5

An axiom of quantum mechanics dictates that quantum operations must also be linear. We
will see a slight generalization of this later, but for now, you can think of this linearity as
implying that quantum operations are matrices. Applying a quantum operation to a quan-
tum state simply means multiplying the vector of the state with the matrix of the quantum
operation.

Matrices preserving the ℓ2-norm have a beautiful characterization—namely, they are the
unitary matrices, i.e., matrices U ∈ Cd×d such that UU † = I. Here, “†” is the conjugate
transpose operation and “I” is the identity matrix.

1.2 Multi-qubit quantum computation

In general, we think of large classical computations as a sequence of operations on some
bit string. In this way we can break up some large complex operation into a sequence of
simpler operations. The number of operations required to build the more complex operation
is a proxy for how complex that operation really is. Similarly, in quantum systems, we want
to build up larger more complex operations from simpler ones. To do this, we first need to
understand what a quantum systems consisting of multiple qubits, so that we can understand
what it means to locally apply some quantum operation.

Tensor product of states

Once again, let’s start with a discussion of multiple classical random bits, and see how it
generalizes to qubits. Let A,B be two random bits. Each bit has some probability of being
in the 0 or 1 outcome. Together, the two bits give rise to a probability distribution over pairs
of outcomes (i.e., 00, 01, 10, and 11). We can derive the probability of a particular pair of
outcomes by multiplying the probabilities of the individual outcome for each bit. For example,
let

A =

(
0.3
0.7

)
← 0
← 1

, B =

(
0.6
0.4

)
← 0
← 1

Then the product distribution associated to A and B together gives rise to the vector

AB =


0.18
0.12
0.42
0.28


← 00
← 01
← 10
← 11

Combining two separate qubits into a single system is exactly the same. Let v, w ∈ C2 be
vectors representing two qubits. The vector of the joint system is called the tensor product
v ⊗ w of the two vectors v and w. The tensor product operation yields the vector containing
all products of amplitudes. The example looks identical to the classical setting:

v =

(√
0.3√
0.7

)
← 0
← 1

, w =

(√
0.6√
0.4

)
← 0
← 1

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 6

and

v ⊗ w =


√
0.18√
0.12√
0.42√
0.28


← 00
← 01
← 10
← 11

Formally, the tensor product operation⊗ is defined over any pair of vectors v ∈ Ca and w ∈ Cb
(not necessarily of the same length) as

v ⊗ w :=

v1w...
vaw

 =



v1w1
...

v1wd
v2w1

...
vawb


From this definition, one can derive the following properties of the tensor product, which
hold for all complex vectors v, w, z and scalars α, β ∈ C:

Scalar multiplication: (αv)⊗ (βw) = (αβ)(v ⊗ w)

Associativity: (v ⊗ w)⊗ z = v ⊗ (w ⊗ z)

Distributivity: v ⊗ (w + z) = v ⊗ w + v ⊗ z

We have that the tensor product of two qubits is represented by a length-4 complex vector,
the tensor product of three qubits is represented by a length-8 vector, and so on. One of the
key questions we will ask in these notes is: how much of this exponentially is really there?
Of course, when it comes to quantum states constructed from tensor products of qubits, the
answer is... not much. To describe such a state, we simply need the 2 amplitudes for each
individual qubit, a total of 2n amplitudes for an n-qubit state, rather than the 2n amplitudes
in the tensor product vector.

Critically, however, not all quantum states over qubits can be described in this way. That is,
we can start with tensor product of single-qubit quantum states, apply a sequence of quantum
operations, and arrive at a state which cannot be described by any tensor product of single-
qubit states. Such states are called entangled.

Our first example of an entangled 2-qubit state is the following:
1/
√
2

0
0

1/
√
2


which is known (amongst other names) as the Bell state. Before we prove this state is en-
tangled, let’s take a moment to consider what would happen if we measured this state. We
would see the 00 outcomes with probability 1/2 and the 11 outcome with probability 1/2. In
other words, if we made the measurement and we saw that the first qubit was 0, we would
immediately know the second qubit was also 0. This description gets even stranger when

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 7

we consider the possibility that we could dramatically separate the first and second qubits,
putting each on either end of the galaxy (hard to do in practice, of course!). Measuring at
one end of the galaxy immediately tells us outcome of the qubit at the other end.1

To prove the Bell state is entangled, we argue by contradiction. Suppose otherwise, then
we would have 

1/
√
2

0
0

1/
√
2

 =

(
α0

α1

)
⊗
(
β0
β1

)
=


α0β0
α0β1
α1β0
α1β1


for some complex amplitudes α0, α1, β0, β1. Comparing the left and right equations, we get
the constraints:

1√
2
= α0β0, 0 = α0β1, 0 = α1β0,

1√
2
= α1β1.

One can check this system of equations has no feasible solution, and therefore, the Bell state
must entangled.

Tensor product of matrices

The tensor product of matrices is the unique operator which respects the tensor product of
the underlying states. That is, for unitaries U ∈ Ca and V ∈ Cb, the tensor product unitary
U ⊗ V is the unique linear operator such that

(U ⊗ V)(v ⊗ w) = (Uv)⊗ (V w)

for all states v ∈ Ca and w ∈ Cb. This definition lines up with our intuition that if we apply a
unitary to a specific qubit, then it should not affect any other qubit.

Formally, one can give a (rather more cumbersome) definition of the tensor product of
arbitrary matrices U ∈ Ca and V ∈ Cb as:

U ⊗ V =


u11V u12V · · · u1aV
u21V u22V · · · u2aV

...
...

. . .
...

ua1V ua2V · · · uaaV

 .

Written out somewhat more explicitly when a = b = 2, we have

U ⊗ V =

u11
(
v11 v12
v21 v22

)
u12

(
v11 v12
v21 v22

)
u21

(
v11 v12
v21 v22

)
u22

(
v11 v12
v21 v22

)
 =


u11v11 u11v12 u12v11 u12v12
u11v21 u11v22 u12v21 u12v22
u21v11 u21v12 u22v11 u22v12
u21v21 u21v22 u22v21 u22v22

 .

1A significant amount of ink has been spilled on exactly what is happening at a physical layer when a measure-
ment like this is made. Look up the ”quantum measurement problem”. Thankfully for one of the most cherished
pysical laws, this entanglement phenomenon does not allow for faster than light communication.

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 8

Partial measurement

With the tensor product, we can now talk about unitary matrices applied to a subset of qubits
in our computation. As it turns out, it is also makes sense to measure a subset of qubits.
Once again, we can appeal to our classical intuition. Suppose we have the following classical
distribution over outcomes: 

0.3
0.1
0.3
0.3


← 00
← 01
← 10
← 11

Suppose we look at the second coin, but not the first. The probability the see the 0-outcome
for the second coin is

Pr[00-outcome] + Pr[10-outcome] = .3 + .3 = .6

since both of those outcomes are consistent with seeing 0 for the second coin. By an identical
calculation, we see the 1-outcome for the second coin with 40% probability.

Let’s suppose we do see the second coin in the 0-outcome. Now we must calculate the
distribution on the first coin conditioned on seeing the second coin in the 0-outcome. For
either outcome b ∈ {0, 1}, we have

Pr[b for first coin | 0 for second coin] =
Pr[(b for first coin) ∧ (0 for second coin)]

Pr[0 for second coin]
.

In our example, the probability we see the 0-outcome on the first coin conditioned on having
seen 0 for the second outcome is just .3/.6 = .5. In practice, its often easiest to do these calcu-
lations by simply removing the outcomes that are inconsistent with the partial measurement,
and then renormalizing the vector. For our example where we’ve seen the 0-outcome on the
second coin, we have

0.3
0.1
0.3
0.3

 Remove inconsistent
outcomes−−−−−−−−−−−−→


0.3
0
0.3
0

 Renormalize−−−−−−−→


0.5
0
0.5
0

 .

Once again, the quantum setting is identical except everything is done with respect to the
ℓ2-norm rather than the ℓ1-norm. For completeness, let’s look at a similar example with a
quantum state: 

√
0.3√
0.1√
0.3√
0.3


← 00
← 01
← 10
← 11

The probability we see the 0-outcome for second qubit is |
√
.3|2 + |

√
.3|2 = .6, and the distri-

bution on the first qubit conditioned on this outcome is
√
0.3√
0.1√
0.3√
0.3

 Remove inconsistent
outcomes−−−−−−−−−−−−→


√
0.3
0√
0.3
0

 Renormalize−−−−−−−→


√
0.5
0√
0.5
0

 .

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 9

This procedure will be easier to describe more formally once we’ve introduced the notation
in the following section.

1.3 Dirac notation and inner products

Let’s start this section by introducing a method for writing quantum states, called Dirac no-
tation. While this notation may at first seem somewhat unnecessary, it turns out to be quite
natural. The most basic notational idea is that we will use a “ket”, which looks like |·⟩, to
describe a vector that is supposed to be a quantum state (i.e., a unit vector with respect to the
ℓ2-norm). Importantly, we reserve certain vectors special states. In particular, the 0-outcome
and 1-outcome states, which we have previously been referring to somewhat awkwardly, are
now associated with the following vectors:

|0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
.

So, for example, we can write an arbitrary single-qubit quantum state |ψ⟩ as

|ψ⟩ = α |0⟩+ β |1⟩

for amplitudes α, β ∈ C. To write multi-qubit states in this notation, we employ another
useful shorthand for bit strings x ∈ {0, 1}n:

|x⟩ := |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩

We call such states the classical basis states. Now, any n-qubit state |ψ⟩ can be written as linear
combination of the classical basis states:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩

where αx ∈ C is some complex amplitude for each x ∈ {0, 1}n. For example, we can write
the Bell state introduced in the previous section as

|00⟩+ |11⟩√
2

.

Inner products

Every quantum state lives in a vector space Cd. We will often use that this vector space
is actually a Hilbert space, meaning that it is equipped with an inner product: for vectors
v, w ∈ Cd, their inner product is defined as

v†w =

d∑
i=1

viwi.

In Dirac notation, we write ⟨ψ| (pronounced “bra”-ψ) to denote the conjugate transpose of
the state |ψ⟩. Therefore, the inner product between two state |ψ⟩ and |φ⟩ is written as

⟨ψ|φ⟩ :=
bra
↓
⟨ψ| ·

ket
↓
|φ⟩

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 10

where the lefthand side shows yet another shorthand. Now we can finally see the reason for
the weird names “bra” and “ket”. When you put them together to form an inner product, you
get the phrase “braket”, which looks like “bracket” if you squint.

Why go through all this trouble to create a shorthand for inner products? Perhaps most
importantly, the inner product induces a natural distance measure on quantum states. If the
inner product of two states is 1, then the states are identical. If the inner product is 0, then
the states are perfectly distinguishable.

Outer products

We can also use Dirac notation to denote the outer product between states in the natural way.
For states |ψ⟩ , |φ⟩ ∈ Cd, their outer product is

|ψ⟩⟨φ| :=


ψ1

ψ2
...
ψd

(φ1 φ2 · · · φd
)
=


ψ1φ1 ψ1φ2 · · · ψ1φd
ψ2φ1 ψ2φ2 · · · ψ2φd

...
...

. . .
...

ψdφ1 ψdφ2 · · · ψdφd


The outer product is useful for describing quantum operations. For example, an arbitrary
n-qubit unitary U can be written as

U =
∑

x,y∈{0,1}n
ux,y |x⟩⟨y|

where ux,y = ⟨x|U |y⟩ ∈ C is the amplitude the unitary places on the state |x⟩ on input |y⟩. In
this case, |x⟩⟨y| is just matrix which is 1 at entry (x, y) and 0 everywhere else.

Summary – Quantum computation over n qubits

States: |ψ⟩ ∈ C2n such that
∑

x∈{0,1}n |⟨x|ψ⟩|
2 = 1

Operations: U ∈ C2n×2n such that U †U = U †U = I
Applying U to |ψ⟩ results in the state U |ψ⟩

Measurement: State collapses to |x⟩ with probability |⟨x|ψ⟩|2

1.4 Mixed states

For many questions in quantum computation, the formalism of states and operations we’ve
previously developed is sufficient. For example, most quantum algorithms start with some
classical basis state, apply some unitary operation, and then measure. However, there is
actually a more general form of a quantum state that is useful in a variety of contexts, like
when you have noise in your quantum computer.

The quantum states |ψ⟩ we have defined previously are called pure states. What makes a
state “impure”, or as it’s traditionally called “mixed”? We say that a state is mixed when it
represents a probability distrubtion of pure states. To see why these two notions are different,
it’s helpful to look at an example.

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 11

On the one hand, let’s take the pure state |+⟩ := |0⟩+|1⟩√
2

which in some sense equal parts
|0⟩ and |1⟩. On the other hand, let’s take the mixed state which is either |0⟩ or |1⟩ with 50%
probability. These states may superficially seem to be the same (after all, they have the same
probability over outcomes when measured), but are actually quite different. To see this, let’s
examine what happens when we apply the following unitary H, which is called the Hadamard
gate:

H =
1√
2

(
1 1
1 −1

)
.

Applying H to our pure state |+⟩, we get

H |+⟩ = 1

2

(
1 1
1 −1

)(
1
1

)
=

(
1
0

)
= |0⟩

In other words, if we were to measure our pure state after the application of the unitary
operation H, then we are guaranteed to see the outcome |0⟩. This will not be true in our
mixed state picture. Let’s do the calculation. Applying H to the mixed state, we get

H |0⟩ = 1

2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
= |+⟩

and

H |1⟩ = 1

2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−1

)
=: |−⟩ ,

each of which happens with 50% probability. What is the probability we measure |0⟩ now?
Given the calculation above of what the Hadamard transformation does to each of our starting
states, we have

Pr[measure |0⟩] =Pr[Original state was |0⟩] · Pr[measure |0⟩ on state |+⟩]
+ Pr[Original state was |1⟩] · Pr[measure |0⟩ on state |−⟩]

=
1

2
· 1
2
+

1

2
· 1
2
=

1

2

We can now see that when our state was a statistical mixture of |0⟩ and |1⟩, the Hadamard
transformation didn’t change our measurement probabilities at all. In fact, this is a general
phenomenon. One can show that no matter what unitary transformation you apply to this
mixed state, you will always get |0⟩ and |1⟩ with 50% probability. This will be easy to show
using the formalism we now introduce.

Density matrices

General quantum systems are fully described by statistical mixtures of quantum states—that
is, an ensemble of pure states {|ψi⟩}i each of which is prepared with probability pi ∈ [0, 1].
The density matrix corresponding to this ensemble is

ρ =
∑
i

pi |ψi⟩⟨ψi| ∈ C2n×2n

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 12

where
∑

i pi = 1. One can show that if you have a density matrix ρ and apply a unitary U ,
that the new density matrix is given by UρU †. Furthermore, measurement results in outcome
|x⟩ with probability ⟨x| ρ |x⟩, whereupon ρ collapses to the state |x⟩⟨x|.

Let’s revisit our example of an even statistical mixture of the states |0⟩ and |1⟩. The
corresponding density matrix is

1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1| = 1

2

(
1 0
0 0

)
+

1

2

(
0 0
0 1

)
=

1

2

(
1 0
0 1

)
=
I

2
.

As it turns out this stated is called the maximally mixed state since it represents that we
essentially have no knowledge of what the underlying state is. To see this, imagine applying
any unitary U to this state. We would get

U

(
I

2

)
U † =

UU †

2
=
I

2
,

as the new state, which is the same state we started with. In other words, no unitary operation
changes how the state looks. This proves the claim we made earlier that any unitary followed
by measurement would result in outcomes |0⟩ and |1⟩ with equal probability.

What matrices correspond to ensembles of pure states? As it turns out, there is a very nice
characterization: ρ is a valid density matrix if and only if ρ is a trace-1 positive semidefinite
matrix. Trace-1 implies that Tr(ρ) = 1. Positive semidefinite implies that ⟨ψ| ρ |ψ⟩ ≥ 0 for all
pure states |ψ⟩.

The forward direction of this claim can be shown by reasoning directly about the types
of matrices that an ensemble of states can give rise to. The reverse direction can be shown
by taking the spectral decomposition of ρ, which is valid since we have assumed that ρ is
positive semidefinite. The eigenvectors of this decomposition will be the pure states in the
decomposition, and the eigenvalues will be the associated probabilities.

Quantum channels

As one might have now guessed, unitary transformations are also not the most general trans-
formation on quantum states. Quantum transformations that work on the level of density
matrices are called quantum channels. That said, it is not true that every channel which
preserves density matrices corresponds to a valid quantum operation. Most importantly, as
required by the axioms of quantum mechanics, the channel must be linear. Furthermore, for
technical reasons having to do with applying the channel to a restricted set of qubits, we
must also require that the quantum channel still maps density matrices to density matrices
when it is tensored with the identity map. Maps satisfying all the above conditions are called
completely positive trace preserving (CPTP).

Measurement

While there is a more general form of quantum measurements, it turns out that these more
general measurements can be simulated by the measurements that we have already intro-
duced. So, for simplicity, we will always assume that we measure our qubits the usual way.

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 13

Summary – Quantum computation with n-qubit mixed states

States: ρ ∈ C2n×2n such that Tr(ρ) = 1 and ρ is positive semidefinite

Operations: Completely positive trace-preserving maps Φ
If Φ is a unitary channel, then Φ(ρ) = UρU † for unitary U ∈ C2n×2n

Measurement: State collapses to |x⟩⟨x| with probability ⟨x| ρ |x⟩

Partial Trace

One of the most important reasons to introduce the density matrix formalism is to be able
to talk about parts of a quantum state in isolation. That is, even if we have an n-qubit pure
state, it is not necessarily the case that the state restricted to, say, the first n/2 qubits is a pure
state.

We now introduce a way to “trace out” part of a density matrix of a large system to
describe the state on the leftover qubits. To start, let’s imagine we start with a composite
system HA ⊗HB. For simplicitly, you can at first just assume that HA and HB are the Hilbert
spaces for two different qubits. Formally, the partial trace TrB is the unique linear map
satisfying

TrB(|ai⟩ ⟨aj |)⊗ |bi⟩ ⟨bj |) = |ai⟩ ⟨aj |Tr(|bi⟩ ⟨bj |) ,
where ai, aj ∈ HA and bi, bj ∈ HB are basis elements for the two subsystems.

So, if we have some state ρAB that lives in the Hilbert space HA ⊗ HB, then the density
matrix for the subsystem A after ignoring the subsystem B is given by

ρA = TrB (ρAB) .

If we apply the partial trace operator to a product state we get, unsurprisingly,

TrB (ρA ⊗ ρB) = ρA.

What happens when we take the partial trace of the Bell state? The density matrix is given by

ρBell :=

(
|00⟩+ |11⟩√

2

)(
⟨00|+ ⟨11|√

2

)
=
|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|

2

so tracing out the second qubit, we get (by linearity of the partial trace)

Tr2(ρBell) =
1

2
(Tr2(|00⟩⟨00|) + Tr2(|00⟩⟨11|) + Tr2(|11⟩⟨00|) + Tr2(|11⟩⟨11|))

=
1

2
(|0⟩⟨0|Tr(|0⟩⟨0|) + |0⟩⟨1|Tr(|0⟩⟨1|) + |1⟩⟨0|Tr(|1⟩⟨0|) + |1⟩⟨1|Tr(|1⟩⟨1|))

=
1

2
(|0⟩⟨0| · 1 + |0⟩⟨1| · 0 + |1⟩⟨0| · 0 + |1⟩⟨1| · 1)

=
|0⟩⟨0|+ |1⟩⟨1|

2
.

That is, if we take the Bell state and trace out a qubit, we are left with the maximally mixed
state. This may give you some sense of the fragility of quantum computations. If you take an
entangled state and lose a single qubit, it may become completely useless.

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 14

Reconciling the pure and mixed states

Often it will be easier to reason about pure states rather than mixed ones. As we’ve seen
before, this is in some sense fundamentally impossible—there are mixed states which behave
completely differently from pure ones. That said, there is also some sense in which there is
an equivalence between the two settings. Namely, for every n-qubit mixed state ρ, there is
a (2n)-qubit pure state such that tracing out the last n qubits of |ψ⟩ leaves the state ρ. This
process is called purification.

We will give an explicit purification procedure. First, let ρ be an arbitrary n-qubit mixed
state:

ρ =
∑

x∈{0,1}n
px |ψx⟩⟨ψx|

The following state will be a purification of ρ:

|ψ⟩ :=
∑

x∈{0,1}n

√
px |ψx⟩ ⊗ |x⟩

Let B be the system consisting of the last n qubits. Tracing out B, we get the density matrix:

TrB (|ψ⟩⟨ψ|) = TrB

(∑
x,y
√
pxpy |ψx⟩⟨ψy| ⊗ |x⟩⟨y|

)
=
∑

x,y
√
pxpy TrB(|ψx⟩⟨ψy| ⊗ |x⟩⟨y|) (Linearity of partial trace)

=
∑

x,y
√
pxpy |ψx⟩⟨ψj |Tr (|x⟩⟨y|) (Definition of partial trace)

=
∑

x px |ψx⟩⟨ψx| (Trace is 1 iff x = y)

which is precisely the mixed state ρ that we wanted to embed into |ψ⟩.
Are purifications unique? Unfortunately, not. To see this, notice that we can generalize

our purification procedure above my multiplying the second register by any n-qubit unitary
U :

|ψ⟩ :=
∑

x∈{0,1}n

√
px |ψx⟩ ⊗ (U |x⟩).

Intuitively, it makes sense that changing the basis of the second register shouldn’t affect partial
trace since we never used anything special about the classical basis states. Formally, you can
check that the computation is agnostic to the choice of unitary U because of the following
equalities:

Tr(U |x⟩⟨y|U †) = Tr(U †U |x⟩⟨y|) = Tr(|x⟩⟨y|)

where the first equality uses the cyclic property of the trace and the second using the fact that
U is unitary.

1.5 Noteworthy quantum phenomena

Let’s start to use the quantum formalism to take note of some interesting phenomena. We
start with a classic result which implies that quantum information cannot be copied.

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 15

Theorem 1 (No-Cloning Theorem). There is no (2n)-qubit unitary U and n-qubit state |φ⟩ such
that

U(|ψ⟩ ⊗ |φ⟩) = |ψ⟩ ⊗ |ψ⟩

for all pure states |ψ⟩.

Proof. We argue by constradiction. Suppose such at U and |φ⟩ existed, and let |ψ1⟩ , |ψ2⟩ be
two states we want to copy. In other words, we have

U(|ψi⟩ ⊗ |φ⟩) = |ψi⟩ ⊗ |ψi⟩

for i ∈ {1, 2}. Let’s now take the inner product of the two states U(|ψ1⟩⊗|φ⟩) and U(|ψ2⟩⊗|φ⟩)

(|ψ1⟩ ⊗ |φ⟩)U †U(|ψ2⟩ ⊗ |φ⟩) = ⟨ψ1|ψ2⟩ ⟨φ|φ⟩ = ⟨ψ1|ψ2⟩

and compare it to the inner product of |ψ1⟩ ⊗ |ψ1⟩ and |ψ2⟩ ⊗ |ψ2⟩:

(⟨ψ1| ⊗ ⟨ψ1|)(|ψ2⟩ ⊗ |ψ2⟩) = ⟨ψ1|ψ2⟩2 .

Cloning implies that these two expressions are equal:

⟨ψ1|ψ2⟩ = ⟨ψ1|ψ2⟩2 .

However, for any states such that ⟨ψ1|ψ2⟩ ̸∈ {0, 1}, the above equation will not hold. That is,
cloning breaks for any distinct pair of non-orthogonal states!

Chapter 2

Computation with Quantum Circuits

2.1 The quantum circuit model

How do we describe a quantum algorithm? One might think that something like a general-
ization of the classical Turing machine may be a particularly apt choice, given the centrality
of that model to the story of classical theory of computation. While it is possible to define a
quantum Turing machine, it turns out to be rather cumbersome to work with.

Instead, we will use a model of computation that more-or-less is the straightforward real-
ization of applying a sequence of unitaries—the quantum circuit.

Introduction to quantum circuits

A n-qubit quantum circuit is a collection of unitary operations G1, . . . , Gm, called gates, ap-
plied in sequence to a subset of n wires. The composition of the gates in the circuit generates
a 2n × 2n unitary operation. We assume that each gate is in tensor product with the identity
operation on each wire that it does not touch. Let’s look at a simple example:

G1

G3

G2

time−−−−−−−−−−−−→

The above diagram is a circut on 3 qubits with 3 gates: the single-qubit gate G1 is applied
first; the 2-qubit gate G2 is applied next; and finally G3 is applied as a 3-qubit gate. The
unitary matrix representing this circuit is

G3 (I ⊗G2) (G1 ⊗ I ⊗ I) .

Beware: matrix multiplication happens the reverse order of the circuit, which is why G1

appears last the composition of unitaries. Since G1 and G2 act on different wires, we get that

(I ⊗G2) (G1 ⊗ I ⊗ I) = G1 ⊗G2.

16

CHAPTER 2. COMPUTATION WITH QUANTUM CIRCUITS 17

Therefore, in the diagram, we can put G1 and G2 on the same layer.

G1

G3

G2

That is, a layer of the circuits consists of a set of gates that can be applied simultaneously
since they act on different qubits. The depth of a circuit is the number of layers of gates it has.
Therefore, the example circuit above has depth 2.

Examples with common gates

Let’s take a look at some of the most common gates used in quantum circuits and the special
notation that we use to denote them.

Classical reversible gates

One of the most common two-qubit gates is the controlled-NOT or CNOT gate. Recall that by
linearity, it suffices to define the action of any gate on the computational basis. CNOT has the
following action:

|00⟩ 7→ |00⟩ , |01⟩ 7→ |01⟩ , |10⟩ 7→ |11⟩ , |11⟩ 7→ |10⟩ .

Notice that CNOT maps any computational basis state to another computational basis state.
That is, the CNOT gate is “classical” in the sense that it cannot be used to create superposition
of inputs. A CNOT gate in a circuit is depicted as a • symbol (the control) connected to a ⊕
symbol (the target):

|x⟩ |x⟩

|b⟩ |b⊕ x⟩

Here, we’ve shown how the CNOT gate acts on general computational basis states, where
x, b ∈ {0, 1} are arbitrary bits and b⊕ x denotes their XOR (i.e., addition modulo 2).

Another related gate is the version of the CNOT gate with an extra control, that is, the
controlled-controlled-NOT gate, most commonly referred to as the Toffoli gate. As a circuit, it
looks like

|x⟩ |x⟩
|y⟩ |y⟩

|b⟩ |b⊕ xy⟩

where x, y, b ∈ {0, 1} are arbitrary bits (xy is the product of x and y). Notice that the third bit
is flipped exactly when both controls are 1.

CHAPTER 2. COMPUTATION WITH QUANTUM CIRCUITS 18

The Toffoli gate is in some sense more powerful than the CNOT gate since it can be used to
generate the CNOT gate. Notice that if we set the second input qubit above to |1⟩ (i.e., y = 1),
then the remaining effect on the remaining two qubits is exactly the CNOT gate. We will see
later however, that the reverse is not true—we cannot just use the CNOT gate to generate a
Toffoli gate.

Finally, let’s discuss the SWAP gate, another important “classical reversible” gate on 2
qubits. Aplty named, the SWAP gate swaps qubits, i.e., for all x, y ∈ {0, 1} it maps:

|xy⟩ 7→ |yx⟩ .

In a circuit diagram, it is depicted as

|x⟩ |y⟩

|y⟩ |x⟩

One can check the following nice identity:

=

In other words, we can replace every SWAP gate in a circuit with 3 CNOT gates. This is a
common theme we will continue to see—we can take some gates as the fundamental ones
that will generate the rest.

Change of basis operations

Evidently, we need a gate that can create a superposition of inputs from a classical basis state.
The Hadamard gate is the canonical choice for such an operation. It has the action

H |0⟩ = |0⟩+ |1⟩√
2

:= |+⟩ H |1⟩ = |0⟩ − |1⟩√
2

:= |−⟩

on the computational basis. Notice that Hadamard gate has given rise to a new basis, the
{|+⟩ , |−⟩} basis. In fact, Hadamard switches back and forth between the computational basis
and this new basis. That is, the Hadamard gate is its own inverse: H2 = I. As a circuit, it is
shown as

|x⟩ H
|0⟩+(−1)x|1⟩√

2

for any x ∈ {0, 1}.
As another example, let’s consider a circuit built from Hadamard and CNOT gates:

H H

H H

CHAPTER 2. COMPUTATION WITH QUANTUM CIRCUITS 19

One way of understanding this circuit would be to just explicitly compute the unitary matrix
(H⊗H)CNOT(H⊗H), but it is often more helpful to instead look at how the system evolves
over a basis. Let’s see how it acts on the computational basis, considering one gate at a time:

|00⟩ H⊗H−−−→ |+⟩ ⊗ |+⟩ =
(
|0⟩+ |1⟩√

2

)
⊗
(
|0⟩+ |1⟩√

2

)
=
|00⟩+ |01⟩+ |10⟩+ |11⟩

2

That is, after applying H ⊗H, we have the uniform superposition over 2-qubit computational
basis states. We know that the CNOT gate just permutes the elements of the computational
basis, or, in other words, it must do nothing to do the above state:

|00⟩+ |01⟩+ |10⟩+ |11⟩
2

CNOT−−−−→ |00⟩+ |01⟩+ |10⟩+ |11⟩
2

.

Of course, if we’ve done nothing to the state, then it must also factorize as

|+⟩ ⊗ |+⟩ = (H ⊗H) |00⟩ .

Therefore, the final layer of Hadamard gates returns the state to |00⟩. That is, after all that
computation, we see that the circuit acts as the identity on the |00⟩. For completeness, let’s
see one more case (the input |01⟩) in its entirety:

|01⟩ H⊗H−−−→
(
|0⟩+ |1⟩√

2

)
⊗
(
|0⟩ − |1⟩√

2

)
=
|00⟩ − |01⟩+ |10⟩ − |11⟩

2

CNOT−−−−→ |00⟩ − |01⟩ − |10⟩+ |11⟩
2

= |−⟩ ⊗ |−⟩
H⊗H−−−→ |11⟩

If we were to continue with the entire computational basis, we would see

|00⟩ 7→ |00⟩ , |01⟩ 7→ |11⟩ , |10⟩ 7→ |10⟩ , |11⟩ 7→ |01⟩ .

We’ve seen this gate before. It’s just the CNOT gate with the control on the second qubit
instead of the first! That is, we’ve derived the following circuit identity:

H H
=

H H

Notice that up until this point, every gate that we’ve introduced is real—the all elements
of the unitary matrix representing the gate are real numbers. Let’s now introduce some gates
that have complex entries.

Phase gates

The gate most commonly referred to as the “phase gate” is the single-qubit diagonal gate S
that simply multiplies the |1⟩ state by a phase of i:

S |0⟩ = |0⟩ S |1⟩ = i |1⟩

CHAPTER 2. COMPUTATION WITH QUANTUM CIRCUITS 20

Another type of phase gate, most commonly called a T -gate, is the square root of this
operation:

T |0⟩ = |0⟩ T |1⟩ = ei
π
4 |1⟩

Unsurprisingly, there are many other common gates that we have yet to define. Thankfully,
the gates we have already allow us to do essentially everything we want.

Universality, approximations, and circuit size

A gate set is the collections of gates that one can use in the construction of a circuit. Typically,
when a gate is included in a gate set, then you’re allowed to apply that gate as many times
you like on whichever subset of qubits that you like.

Universality captures the notion that a particular gate set can be used to construct any
possible quantum operation. There are several different kinds of universality you might want:

• Exact Universality: For any n-qubit unitary, there is a circuit that exactly compute the
unitary.

• Approximate Universality: For any n-qubit unitary, there is a circuit that approximately
computes the unitary. One common measure of closeness is the operator norm.

• Computational Universality: For any n-qubit unitary, the probability distribution result-
ing from measuring the first qubit can be approximated by measuring the first qubit of
the circuit. For example, it turns out that real quantum gates (without complex entries)
are sufficient for computational universality, whereas they clearly fail on the other two
notions of universality.

Given that we have a universal gate set, how many gates do we actually need to construct
an arbitrary unitary? Let’s look at the exact case, where we can get an estimate based on the
number of parameters it takes to specify arbitrary unitary matrix. The first claim is that an
arbitrary complex d× d unitary matrix U is specified by d2 real parameters.

To see this, first note there are d2 entries in the matrix, each with a complex part and a real
part, that is, 2d2 real parameters total. However, the unitary constraint UU † = I imposes d2

algebraically independent real conditions (d for the fact that the norm of each column should
be 1, and d(d − 1) conditions for the fact that the complex inner product of each row should
be 0).

If our gate set consists of gates that only act on a constant number of qubits (which is often
the convention), then each such gate only contributes constantly many real parameters to the
construction of the unitary. Therefore, we must have Ω(4n) gates to construct an arbitrary
n-qubit unitary exactly.

A generalization of this result shows that this lower bound is essentially tight for approx-
imation computation as well—Ω(4n log(1/ϵ)) gates are required to approximately compute
any unitary to within ϵ-accuracy with respect to the operator norm [DN06]. That is, a unitary
U is ϵ-close to unitary V if

∥U − V ∥op = sup
ψ
∥(U − V) |ψ⟩∥2 ≤ ϵ.

Thankfully, there is a matching (up to polylog factors) circuit building algorithm as well.

CHAPTER 2. COMPUTATION WITH QUANTUM CIRCUITS 21

Theorem 2 (Solovay-Kitaev [Kit97]). Given an approximately universal gate set, there is a
circuit to appoximate any unitary to ϵ-accuracy with O(4npolylog(1ϵ)) gates.

The version of the Solovay-Kitaev theorem stated above is actually the result of Bouland
and Giurgica-Tiron [BGT21], who show how to work with general gate sets. Unfortunately,
their result suffers in the exponent of the log factor. The original and most-efficient Solovay-
Kitaev theorems require that if a gate is in the gate set, then its inverse is also in the gate set.
The current best result in this setting is by Kuperperg, who shows a bound ofO(4n log1.441(1/ϵ))
gates [Kup23].

2.2 The complexity class BQP

This section relies on a background in classical complexity theory. For a short review of some
of the fundamental classical complexity classes, see Appendix A.

To properly define the quantum complexity class BQP, we need to first discuss how a
quantum circuit is encoded. Let us suppose that the circuit is constructed from some reason-
able universal gate set (i.e., all the amplitudes used in the gates are efficiently computable).
We will use the notation ⟨Q⟩ to denote the encoding of a circuit Q as a bit string. We now
discuss the requirement for a proper encoding:

1. The encoding is unique: mapping from a circuit to its encoding must be injective.

2. The encoding is not too big: if Q has m gates, then ⟨Q⟩ has at most poly(m) bits.

3. The encoding is not too small: if Q has m gates, then ⟨Q⟩ has at least m bits.

Equipped with an encoding, we can now talk about Turing machines whose output is (an
encoding of) a quantum circuit. A circuit family {Qn}∞n=1 is poly-time uniform if there exists
a poly-time Turing machine such that on input 1n outputs ⟨Qn⟩. We are now ready to define
the complexity class capturing efficient quantum computation:

Bounded-error Quantum Polynomial Time (BQP):
Languages L such that there exists poly-time uniform class of quantum circuits {Qn}∞n=1 and
a polynomial q such that for all x ∈ {0, 1}n:

• If x ∈ L, probability of measuring |1⟩ on the first qubit of Qn |x⟩ ⊗
∣∣0q(n)〉 is at least 2

3 .

• If x /∈ L, probability of measuring |1⟩ on the first qubit of Qn |x⟩ ⊗
∣∣0q(n)〉 is at most 1

3 .

Bibliography

[BGT21] Adam Bouland and Tudor Giurgica-Tiron. Efficient universal quantum compilation:
An inverse-free Solovay-Kitaev algorithm. arXiv preprint arXiv:2112.02040, 2021.

[DN06] Christopher M Dawson and Michael A Nielsen. The Solovay-Kitaev algorithm.
Quantum Information & Computation, 6(1):81–95, 2006.

[Kit97] A. Y. Kitaev. Quantum computations: algorithms and error correction. Russ. Math.
Surv., 52(6):1191–1249, 1997.

[Kup23] Greg Kuperberg. Breaking the cubic barrier in the Solovay-Kitaev algorithm. arXiv
preprint arXiv:2306.13158, 2023.

22

Appendix A

Classical complexity

In this appendix, we review some of the important concepts from classical complexity theory.

A.1 Complexity classes for decision problems

For this section, let’s suppose all computation is done over the binary alphabet {0, 1}∗. A
language L ⊆ {0, 1}∗ is simply a set of strings. In this section, we will focus on decision
problems, where the goal is the compute membership in language or promise language. A
complexity class is a collection of languages recognized by a particular model of computation.

The complexity classes below are defined in terms of classical Turing machines. The more
resources we give the Turing machine (e.g., time, space, randomness, or nondeterminism),
the more languages that model of Turing machine can recognize.

Polynomial Time (P):
Languages L such that there exists a deterministic poly-time Turing machine M such that M
accepts x iff x ∈ L.

Non-deterministic Polynomial Time (NP):
Language L such that there exists deterministic poly-time Turing machine M and polynomial
q such that for all x ∈ {0, 1}n

• If x ∈ L, ∃y ∈ {0, 1}q(n) such that M(x, y) accepts

• If x /∈ L, ∀y ∈ {0, 1}q(n), M(x, y) rejects.

NP is a generalization of P (just forget about the witness string y), so P ⊆ NP. It is widely
conjectured that P ̸= NP, but we do not have a proof!

Bounded-error Probabalistic Polynomial Time (BPP):
Languages L such that there exists a deterministic poly-time Turing machine M and polyno-
mial q such that for all x ∈ {0, 1}n

• If x ∈ L, then M(x, y) accepts for at least 2/3 of the strings y ∈ {0, 1}q(n).

• If x /∈ L, then M(x, y) accepts for at most 1/3 of the strings y ∈ {0, 1}q(n).

23

APPENDIX A. CLASSICAL COMPLEXITY 24

That is, y is a random string given to the Turing machine. Once again, it is clear that P ⊆ BPP
since we can just forget about the extra random bits. However, we do not know if BPP ⊆ NP
or if NP ⊆ BPP, though it is widely conjectured that P = BPP.

Probabilistic Polynomial Time (PP):
Languages L such that there exists a deterministic poly-time Turing machine M and polyno-
mial q such that for all x ∈ {0, 1}n

• If x ∈ L, then M(x, y) accepts for more than 1/2 of strings y ∈ {0, 1}q(n).

• If x /∈ L, then M(x, y) accepts at most 1/2 of strings y ∈ {0, 1}q(n).

Notice that the definition PP to identical to that of BPP except with a smaller gap between
acceptance and rejection probabilities. Therefore, we have that BPP ⊆ PP. In fact, PP is
powerful enough even to contain NP. To see this, take any NP machine M , and alter it in
the following way. If M(x, y) accepts, then accept. If M(x, y) rejects, then flip an unbiased
coin (to be completely rigorous, one would need to extend the length of the random string
y)—if heads, accept, and if tails, reject. Notice that if there are no accepting y for the original
machine, then the new machine accepts with exactly 50% probability. However, if there is
any accepting y, then the new machine accepts with greater than 50%, and so the inclusion
NP ⊆ PP follows.

Polynomial Space (PSPACE):
Languages L such that there exists a deterministic Turing machine M that uses at most poly-
nomial space and M accepts x iff x ∈ L.

We have that PP ⊆ PSPACE since a PSPACE machine can simply count all the y ∈ {0, 1}q(n)
that make a poly-time Turing machine accept. There are exponentially many such y, but this
is not an issue since we can erase the previous computation as we are enumerating over all
the y.

Exponential Time (EXP):
Languages L such that there exists a deterministic Turing machine M and a polynomial q such
M halts in 2q(n) time and M accepts x iff x ∈ L.

We have that PSPACE ⊆ EXP because a Turing machine that uses polynomial space can only
have exponentially many configurations. And, if you were to reach the same configuration
twice, then you will be in an infinite loop, so you might as well halt.

Figure A.1 shows a summary of how the complexity classes introduced above relate to
each other.

APPENDIX A. CLASSICAL COMPLEXITY 25

EXP

PSPACE

PP

NP BPP

P

Figure A.1: Inclusion diagram of classical complexity classes. A is below B if A ⊆ B.

	Contents
	Foundations of Quantum Mechanics
	The basics of quantum computation
	Multi-qubit quantum computation
	Dirac notation and inner products
	Mixed states
	Noteworthy quantum phenomena

	Computation with Quantum Circuits
	The quantum circuit model
	The complexity class BQP

	Bibliography
	Classical complexity
	Complexity classes for decision problems

