
CSE 291 / Math 277A - Quantum Complexity Theory (Fall 2025)
Homework 6
Due Friday, December 5, 11:59pm

Instructions: Note: It is highly recommended (though not required) that you type your
answers. It is your responsibility to make any handwriting clear and legible for grading.
You may work with 1-2 other collaborators, but you must write the solutions separately and
clearly mark the names of all people you worked with on each problem.

Problems:

1. Postselection is powerful

Quantum measurements are inherently probabilistic, but what if they weren’t? That is,
what is the power of quantum mechanics when we get to choose or postselect which mea-
surement outcome we get, regardless of how small the probability is of actually measuring
that outcome. Let’s try to formally define a quantum postselection class.

Postselected Bounded Error Quantum Polynomial Time (PostBQP)
The class of languages L such that there is a poly-uniform family of polynomial-size
quantum circuits {Qn}∞n=1 such that for all x ∈ {0, 1}n:

• The probability of measuring |1⟩ on the first qubit of Qn |x⟩ |0 · · · 0⟩ is nonzero.
• If x ∈ L, then conditioned on the first qubit being |1⟩, the probability of measuring
|1⟩ on the second qubit is at least 2/3.

• If x ̸∈ L, then conditioned on the first qubit being |1⟩, the probability of measuring
|1⟩ on the second qubit is at most 1/3.

We will eventually show that this class is extremely powerful, equal to the complexity
class PP. For now, let’s warm up with a simpler inclusion:

(a) [Optional, not graded] Show that NP ⊆ PostBQP.

Hint: Show that you can find a solution to any polynomially computable function
f : {0, 1}n → {0, 1}. It should be intuitive that if you can postselect on a particular
measurement outcome, then you should be able to postselect on seeing a solution to f .
Fitting this into the definition of PostBQP requires some care since your postselection
must always succeed (c.f., the first condition in the definition of PostBQP).

Our goal for the remainder of this problem is to show that in fact PostBQP = PP. The
inclusion PostBQP ⊆ PP follows immediately from our previous proof that BQP ⊆ PP,
so let’s focus on the other direction. We will use the fact that a complete problem for PP
is determining if some polynomially computable function f : {0, 1}n → {0, 1} has fewer
than 2n−1 solutions. Let s ∈ N be the number of solutions to f . It will be useful in the
proof to assume that s > 0, so let’s make that assumption (though this is not required).

We start by preparing the state

1√
2n

∑
x∈{0,1}n

|x⟩ |f(x)⟩ .
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(b) Write the single-qubit state |ψ⟩ on the second register you obtain after applying
Hadamard gates to the first n qubits and postselecting on them being the state |0n⟩.
The amplitudes on |0⟩ and |1⟩ should be in terms of s and n. Remember that |ψ⟩
should be properly normalized.

Note: This procedure might seem somewhat strange since we’re postselecting on n
qubits rahter than a single qubit as indicated in the definition PostBQP. Notice,
however, that we could apply an OR gate to the first n qubits, and postselect on the
output of that OR function being |0⟩.

Our next step will be to prepare the state α |0⟩ |ψ⟩+β |1⟩H |ψ⟩ for some α, β ∈ R+ to be
chosen later. Here, H is the usual Hadamard gate.

(c) Staring with the state α |0⟩ |ψ⟩ + β |1⟩H |ψ⟩, show that postselecting the second
qubit on being |1⟩ yields the state

∣∣φβ/α

〉
:=

αs |0⟩+ (β/
√
2)(2n − 2s) |1⟩√

α2s2 + (β2/2)(2n − 2s)2

on the first qubit.

Our goal will be to use the
∣∣φβ/α

〉
state to determine whether or not s < 2n−1. Let’s first

consider the case where s < 2n−1. The claim is now that a careful setting of α and β
will make the

∣∣φβ/α

〉
state close to |+⟩. To get some intuition, notice that setting β = 0

implies
∣∣φβ/α

〉
= |0⟩ and setting α = 0 implies

∣∣φβ/α

〉
= |1⟩. For intermediate values of α

and β, notice that the amplitudes on the |0⟩ and |1⟩ state are positive since 2n − 2s > 0
whenever s < 2n−1. In other words, as we tune β from 0 to 1, the state must cross over
the |+⟩ state.

(d) Suppose that s < 2n−1. Show that there exist an i ∈ {−n, . . . , n} such that when
β/α = 2i, we have

|⟨+|φ2i⟩| ≥
1 +

√
2√

6
≥ 0.985.

Hint: As we increase i, the worse case distance from |+⟩ happens when |⟨+|φ2i⟩| =
|⟨+|φ2i+1⟩|. This occurs when

|φ2i⟩ = γ0 |0⟩+ γ1 |1⟩

for some γ0, γ1 > 0 with γ20 + γ21 = 1 and

|φ2i+1⟩ = γ0 |0⟩+ 2γ1 |1⟩√
γ20 + 4γ21

= γ1 |0⟩+ γ0 |1⟩

What must γ0 and γ1 be?

(e) Suppose that s ≥ 2n−1. What is the largest that |⟨+|φ2i⟩| could possibly be for any
i?

Hint: Think about the sign of the amplitude on the |1⟩ state on any |φ2i⟩.
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(f) Put everything together. That is, show there is a polynomial-time quantum algo-
rithm with postselection that can determine if s < 2n−1. Hence, PP ⊆ PostBQP.

Hint: You may have to run the algorithm for several |φ2i⟩.
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