
Math 154 - Discrete Math and Graph Theory
Homework 5
Due Monday, March 3rd, 11:59pm

Instructions: It is highly recommended (though not required) that you type your answers.
It is your responsibility to make any handwriting clear and legible for grading. A LaTeX
template for the homework is provided on Canvas. Please start each problem on a new page.

We will only be grading some of the problems below for correctness. However, because
all of the concepts are important, we will not reveal which problems are being graded for
correctness until after the assignment has been submitted. The remaining problems will
be graded for completeness (i.e., does it look like there was a good-faith effort to solve the
problem?).

Additional textbook questions for practice (not graded): 5.1, 5.15(a), 5.16

Problems:

1. Stable matchings

In this problem, we will explore a variant of the bipartite matching problem where each
vertex has a ranking of the vertices it could be paired with. One real world scenario
in which this comes up is in matching medical students to hospital residencies.

Let’s instantiate this problem as follows: We first create a bipartite graph G(A,H)
where A is a set of vertices representing the medical applicants and H is a set of
vertices representing the hospitals. Add an edge {a, h} to the graph if the applicant
a ∈ A has the expertise to work at hospital h ∈ H.1 Moreover, while each applicant
a ∈ A may have the expertise work at several hospitals (a set Ha ⊆ H), they have
some opinion of how much they want to work at each hospital. That is, there is a
total ordering <a on the hospitals Ha given by a’s preferences: for any two hospitals
h, h′ ∈ Ha, either a prefers h′ (i.e., h <a h′) or a prefers h (i.e., h′ <a h). Similarly,
each hospital h ∈ H has a total ordering <h on the applicants Ah ⊆ A they would
most like to hire.

Below is an example with applicants A = {a1, a2, a3} and hospitals H = {h1, h2, h3}.
We can see that applicant a1 has the expertise to work at hospitals h1 and h2, but
would prefer to work at h2. However, hospital h2 would prefer to hire a2 over a1.

a1

a2

a3

h1

h2

h3

[h1 <a1 h2]

[h2 <a2 h3]

[h3 <a3 h1]

[a3 <h1 a1]

[a1 <h2 a2]

[a2 <h3 a3]

1The textbook implicitly assumes that the bipartite graph is complete, whereas this definition does not.
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The question we would like to answer is how to match applicants with hospitals in such
a way that the applicants and hospitals are getting their highest possible preference.
Formally, given a matching M in G(A,H), we say that a hospital h ∈ H would accept
an applicant a ∈ A if either: h is unmatched in M ; or h prefers a to its currently
matched applicant. We define the exact same condition for the applicants: an applicant
would accept a hospital h ∈ H if either: a is unmatched in M ; or a prefers h to its
currently matched hospital. A matching M is stable if there is no edge {a, h} outside
the matching such that: a would accept h; and h would accept a.

In other words, in a stable matching, there may be some other hospitals that an
applicant would prefer to work at, but none of those hospitals would prefer to hire that
applicant over their currently matched applicant.

Let’s first see that stable matchings are meaningfully different from generic maximal
matchings that don’t respect the preference lists.

(a) Give an example of a graph G(A,H) and preference lists for which a maximal
matching is larger than any stable matching.

There are two questions that remain: Does every graph admit a stable matching? If
so, can we find it efficiently? We will answer both questions together by giving an
explicit algorithm to construct a stable matching.

Our plan will be to start with the empty matching M = ∅ and iteratively refine it.
We will say that an applicant a ∈ A tolerates the current matching M if either: a is
unmatched; or a prefers their currently matched hospital over any other hospital that
would accept a. Notice that if a tolerates a matching, they are not not necessarily
matched with their top choice of hospital: a might prefer to work at some other
hospital, but that hospital is already matched to a different applicant that the hospital
prefers.

(b) Suppose there is a matching M for which the following two conditions hold: all
applicants tolerate the matching; and for every applicant a ̸∈ V (M) not in the
matching, there is no hospital h ∈ H that would accept a. Prove that M is a
stable matching.

Our goal now is to try to find some strategy of building a matching so that the matching
will have the properties described in part (b). Here is a first attempt at such an
iterative strategy: if there is an applicant a ∈ A not yet in the matching and h ∈ H
would accept a, update our matching to include the edge {a, h}. It’s possible that h
is already matched with some other applicant a′ ̸= a; in that case, we simply discard
the edge between a′ and h.

(c) Given a matching M and any applicant a ∈ A, show that the number of hospitals
that would accept a never increases when we update the matching M using the
iterative strategy above.

2



If we repeatedly apply the iterative strategy above, we obtain an algorithm that ter-
minates whenever it’s impossible to find an applicant a ∈ A not yet in the matching
that a hospital h ∈ H would accept. Notice that this satisfies the second condition
from part (b).

To satisfy the first condition, we need to make sure that if all applicants tolerate
the matching M , they also tolerate the updated matching. We employ the following
strategy: if there are multiple hospitals that would accept a ̸∈ V (M), then amongst
those hospitals, choose the hospital that a prefers the most.

(d) Let M be a matching tolerated by all a ∈ A. Using the above stategy, show that
one iterative update to M results in a matching tolerated by all applicants a ∈ A.

Since we’ve described an algorithm that satisfies both conditions from part (b), we’ve
now shown that our algorithm produces a stable matching. Let’s analyze its runtime:

(e) Starting from the empty matching, what is an upper bound on the number of
iterations of the algorithm before the algorithm terminates? Justify your answer.
Write your answer in terms of |A| and |H|.

(f) Try out the algorithm on the example graph earlier in the problem with A =
{a1, a2, a3} and H = {h1, h2, h3}. Starting with the empty matching, show each
iterative refinement to arrive at a final stable matching. From the perspective of
the applicants, what do you notice about their matches? From the perspective of
the hospitals, what do you notice about their matches?

2. One failure leads to two

Let G(A,B) be a bipartite graph on 2n vertices with |A| = |B| = n, and suppose that
G(A,B) does not have a perfect matching. Show that there are two distinct subsets
of vertices in G(A,B) that violate Hall’s condition. That is, show that there are two
subsets X1 ̸= X2 such that for i ∈ {1, 2}:

• Subset is contained in one of the bipartitions: Xi ⊆ A or Xi ⊆ B; and

• Size of the neighborhood is smaller than size of the set: |Xi| > |N(Xi)|.
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