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Large quantum gates
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Question: What is the power of large multi-qubit gates?

restricted set of multi-qubit gates
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1- and 2-qubit gates

- Setting: Circuits with arbitrary 1- and 2-qubit gates and some
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Large gates might be experimentally feasible

Rydberg atoms:

« Efficient multiparticle entanglement via asymmetric
Rydberg blockade [Saffman, Malmer 2009]

» Parallel implementation of high-fidelity multiqubit
gates with neutral atoms [Levine et al. 2019]

lon Traps:

* Quantum computations with cold trapped ions
[Cirac, Zoller 1995]

* Multi-particle entanglement of hot trapped ions
[Molmer, Sgrensen 1999]



Large gates often have efficient small-gate decompositions
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Question: What is the power of large multi-qubit gates?
- _

- Observation: Large entangling gates can be efficiently
decomposed into circuits of 1- and 2-qubit gates
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Large gates in constant depth
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Question: What is the power of large multi-qubit gates in constant depth?
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- Experiments: Possibility for less decoherence

Large gate fidelity might be better than the fidelity of
the circuit composed of smaller gates

- Quantum Advantage:
Constant-depth quantum circuits can solve problems that

Exact sampling Is hard unless polynomial hierarchy collapses
[Terhal, DiVincenzo 02]

- Deep knowledge in classical setting

constant-depth classical circuits cannot [Bravyi, Gosset, Konig 17}



Quantum vs. classical circuits in constant depth
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Question: What results hold for classical circuits but not qguantum ones?
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Classical circuit classes
1- and 2-input gates
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- Correspondence between classical and quantum gate classes:
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Quantum circuit classes
1- and 2-qubit gates

[ xp) [ xp)
X)) X))

X3) X3)

by —] ¢

~




Quantum vs. classical circuits in constant depth
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Question: What results hold for classical circuits but not qguantum ones?
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Classical circuit classes™
1- and 2-input gates
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- Correspondence between classical and quantum gate classes:
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Quantum circuit classes
1- and 2-qubit gates
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Constant depth classical circuits can’t compute parity

.
Question: Let ¢’ and 6, be classical circuit complexity classes.

6| ¢ 6, SN Q-¢, & Q-¢,

- Example: NCY C NCO[Z]

No large gates
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Constant depth classical circuits can’t compute parity

:
Question: Let ¢’ and 6, be classical circuit complexity classes.

¢, 6, — Q-¢,<%Q-6,

TR 0
- Example: NC -,C«- NC [2] constant depth

Constant depth }j N
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Constant depth classical circuits can’t compute parity
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Lightcone of output bit is constant size

-

Question: Let ¢’ and 6, be classical circuit complexity classes.
?

¢, 6, — Q-¢,<%Q-6,

- Example: NC’ C NCO[Z] d= 0(1)
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Q

uantum circuits are also constrained by lightcones

-

Question: Let ¢’ and 6, be classical circuit complexity classes.
?

¢, 6, — Q-¢,<%Q-6,

- Example: QNC" C QNC'[2] d = 0(1)
[
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AND gates cannot simulate Parity gates

-

Question: Let ¢’ and 6, be classical circuit complexity classes.

6| ¢ 6, SN Q-¢, ¢ Q-6,

- Example: AC’ C ACY[2]
[Ajtai / Furst, Saxe, Sipser 83]

Us

AC

T

N

Large And gates

unbounded
fan-in

|

N—

11



AND gates cannot simulate Parity gates

-

6| ¢ 6, SN Q-¢, ¢ Q-6,

Question: Let ¢’ and 6, be classical circuit complexity classes.

- Example: AC’ C AC"[2]

constant depth
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AND gates cannot simulate Parity gates

-
Question: Let ¢’ and 6, be classical circuit complexity classes.

6| ¢ 6, SN Q-¢, & Q-¢,

- Example: AC’ C AC"[2]

constant depth

[Ajtai / Furst, Saxe, Sipser 83] |

Constant depth }Q) N

AlldVd

(l) Large / 5
AC [2]- parity 8 1 - }
T gates € 5 - -
88

By

Large And gates




AND gates cannot simulate Parity gates

-

6| ¢ 6, SN Q-¢, ¢ Q-6,

Question: Let ¢’ and 6, be classical circuit complexity classes.

- Example: AC’ C AC"[2]

constant depth
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AND gates cannot simulate Parity gates

-

6| ¢ 6, SN Q-¢, ¢ Q-6,

Question: Let ¢’ and 6, be classical circuit complexity classes.

- Example: AC’ C AC"[2]

constant depth
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Quantum And vs Quantum Parity

RIP

(QuanTUuM LOWER

RIP

A LOWER BOUND

Bounps FOR FaNoUT

[Fang, et al. 2003]

METHOD FOR QUANTUM

CIRCUITS

[Bera 2011}

QAC' vs. QAC"[2]

RIP

Bounbps oN THE QAC

RIP

COMPLEXITY OF

RIP

ON THE PAuLI APPROXIMATING PARITY
SPECTRUM OF QAC Rosenthal 2020
Nadimpalli et al DEeprH-2 QAC circulTs [ |

CANNOT SIMULATE

2023

QUANTUM PARITY

[Padé, et al. 2020]
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Outline

> Barrier to separations
> Quantum constant-depth circuits are powerful

> The surprising relevance of Fanout and Parity

> Maybe we should look for other powerful gates...

> Quantum Majority is powerful
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Correspondence between classical and quantum gate classes

( ) ( )
Classical circuit classes ™ Quantum circuit classes
1- and 2-input gates 1- and 2-qubit gates
X| — X1) X1)
X — — X)) X))
X — = |— f(x) € {0,1} X3) X3)
X, — b)) — f | b @ f(x))
\_ _J _ _J
- Fanout: Classical gate X, X; N\ X,
classes allowed to copy Xy }{
gate outputs X1 N\ X




Quantum Fanout
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Quantum Fanout is scary

-

Theorem [Moore 1999]: QNCO[Z] = QNCSVf

-

- Constant-depth quantum circuits with Fanout can compute Parity

- (H®") - Fanout - (H®") = Parity

r

Recall: AC" C AC[2]

-

> (Classical fanout does not imply Parity
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Quantum Fanout implies Quantum Parity
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Let’s try another separation...

-

Question: Let ¢’ and 6, be classical circuit complexity classes.

. CC ==

Q-¢, & Q-¢,

- Example: AC’[2] ¢ TC"
[Razborov, Smolensky 87]
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Let’s try another separation...

-
Question: Let ¢’ and 6, be classical circuit complexity classes.

?

¢, 6, — Q-¢,<%Q-6,

_ 0 0
- Example: AC [2] .,C(_ TC constant depth

[Razborov, Smolensky 87] |

Constant depth }Q) N
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Fanout is powertful...

~

Question: Let ¢’ and 6, be classical circuit complexity classes.
?

¢, 6, — Q-¢,<%Q-6,

- Example: QAC’[2] € QTC' ?

r

.

Theorem [Hoyer, Spalek 02]: QTCO C QNCO[2] = QACO[Z]

_J

» Constant-depth quantum circuits with Fanout can compute Threshold
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Low-depth complexity classes recap

(e

ACY[2]

Classical

QNC’[2] = QNC} .

Quantum
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Low-depth complexity classes recap

ACY[2]

@ (2

Classical

Quantum
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Quantum Majority is powerful

-

Theorem [G, Morrisl: QNCY[2] € QTC"

~ Constant-depth quantum circuits with Majority can compute Parity

- Caveat: construction is approximate (inverse-poly precision)
- [Hoyer, Spalek 2002] construction also approximate
> Made exact by [Takahashi, Tani 2011]

- Anti-Caveat: construction applies to a generalization of Majority

> Seem useless in the classical setting, but computes Parity
INn the quantum setting
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Classical Threshold gates can compute Parity

-

.
Question: Why isn’t this result trivial? G CD
|

. /
Classical Threshold gates ACO[Z]

can compute Parity

) (2

Classical
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Classical Threshold gates can compute Parity

~

\—

Idea: Exacti(x) = Threshold;(x) A Threshold;. {(x)

EX&]Ctl

EX&Ctg

Or

x € {0,1} Threshold,

__ Parity(x)

\

Fanout!
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Quantum Majority implies Parity — Proof Outline

-

Theorem [G, Morrisl: QNCY[2] € QTC"

~ Constant-depth quantum circuits with Majority can compute Parity

Proof Outline: (following [Rosenthal 20])

1) Cat state generation implies Fanout

2) Give a construction for a Cat state
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Ingredient 1. Cat state creation implies Parity

-

.

Theorem [Moore 1999]: Suppose you can implement unitaries U and U T

such that ‘On> 4 Hn)
\V/2

in constant depth. Then, using Quantum Or gates and U, U™ gates you
can implement Parity in constant depth.

U0 =
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Ingredient 1. Cat state creation implies Parity

|x)
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If | x| =1 (mod 2)
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Ingredient 1. Cat state creation implies Parity

-

-

.
Theorem [Moore 1999]: Suppose you can implement unitaries U and U T

such that ‘On> 4 Hn)

U0y =

2

in constant depth. Then, using Quantum Or gates and U, U" gates you

can implement Parity in constant depth.

_

07) & |yp) + [17) @ [y

- Also works when U |0%) =

V2

- Corollary: If you can approximately construct a
nekomata, then you can approximate Parity

“nekomata”
[Rosenthal 2020}

el
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Ingredient 2: Construct approximate nekomata

Goal: |0 ® |y + 1" ® |y;)
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“target qubits” *ancilla qubits”
0"/1" Wo! ¥

i. For each ancilla column, construct
state with most mass on |0") and |1").

Magnitude

% 1"
ii. Set m so that measuring all ones in the
ancillas with probability 1/2.

—> some columnis zeros ~ 1/2

iii. For each row, apply And gate from

ancillas to target .
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Ingredient 2: Construct approximate nekomata
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state with most mass on |0") and |1").

Magnitude
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—> some columnis zeros ~ 1/2

iii. For each row, apply And gate from

ancillas to target .



Ingredient 2: Construct approximate nekomata
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Ingredient 2: Construct approximate nekomata

) . .
i. For each ancilla column, construct

-
Goal: |0~ + | 1"
09 ® [yo) +117) @ v state with most mass on |0”) and |1").
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29



Ingredient 2i. Constructing weighted column

-

Parity-restricted gate: Let S C {0,1}" be strings with same parity
Uglx) = (= 1)< |x)

- Recall: Threshold gates can be used to generate Exact gates

n
Exact, is a parity-restricted gate with |S| = (k)

%

‘—> — Exactk —
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Ingredient 2i. Constructing weighted column

1) — H H H — H[—
1) —H H H — H[—
. . US . U{O”} . US .

1) —H H H — H—

" Don't read this:

N )2 NE

n—1 N2n—2

5P
Pr[measure [1")] = (1 — )

Pr[measure [0")] =4 (1 —

22n—3
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Ingredient 2: Construct approximate nekomata

_ /m\ - g 4" h
e © ¢ 0o 0 0 0 o o0 Theorem: Exists m =~
® ® 6 6 o ¢ o o o ‘Slz
n< . ®© o 0o 0 0o 0o o o such that probability all columns are |1")
® ® 6 6 o6 o o o o 1 ‘S‘z
e © © ¢ o 0 o o o >5_4n—1
| exists |0") column with probability
i. For each an.cnlalcolumn, 1 S|
construct this biased state > — —
9 In—2
. v,

i. Set number of columns m

- Consider Exact,,» gate

iii. For each row, apply And from " n
ancillas to target | S| = ( ) R
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Putting everything together again

-

Theorem: There is a constant-depth quantum circuit constructed from
U and And gates that approximates Parity with a number of gates

AN
NE

poly | n,

~

~ Poly-size threshold circuits for Parity — QNCSVf C QTCY

- And gate is a U gate with | S| =1
—> EXxponential size QACO for Parity |[Rosenthal 20}
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Open questions

> |s there an exact quantum 0
circuit for Parity using GC> QTC’
Majority? \ ~ QNCYp2]
0 = QNC,;
~ Are the And gates AC"[2]

necessary in our Parity

construction? :
| ) () @
- Does QAC"” = QACY[2]?
> |s there a complete @ @
characterization of the

power of Boolean gates in _
constant depth? Classical Quantum




