Quantum Majority is Powerful

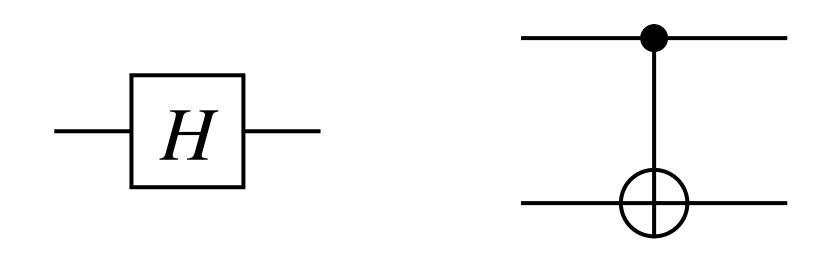
Daniel Grier UC San Diego

Jackson Morris UC San Diego

Large quantum gates

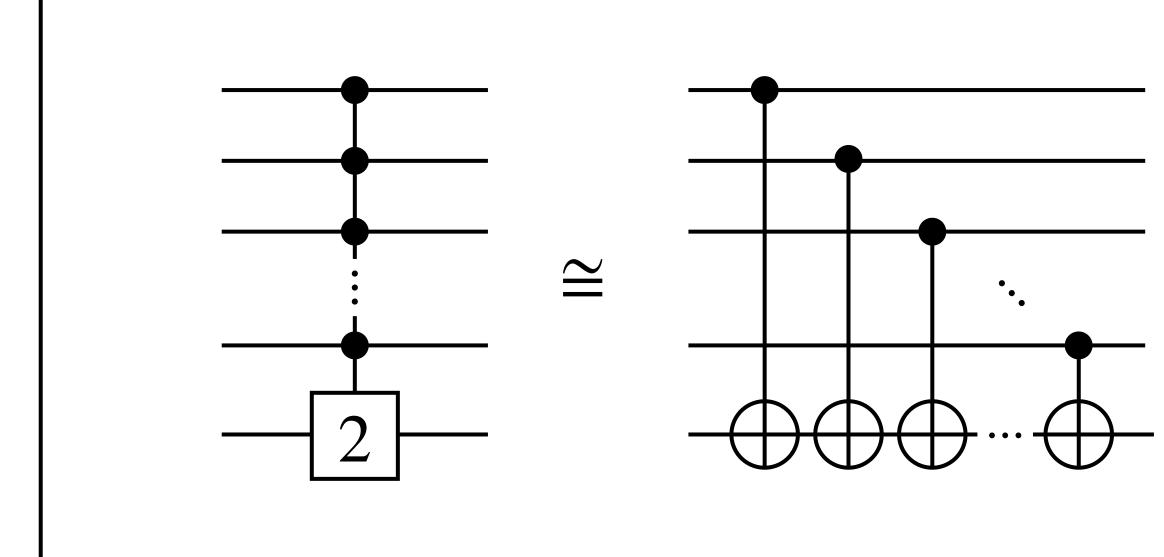
Question: What is the power of large multi-qubit gates?

restricted set of multi-qubit gates



1- and 2-qubit gates

Setting: Circuits with arbitrary 1- and 2-qubit gates and some



multi-qubit gate

Large gates might be experimentally feasible

Rydberg atoms:

- Efficient multiparticle entanglement via asymmetric Rydberg blockade [Saffman, Mølmer 2009]
- Parallel implementation of high-fidelity multiqubit gates with neutral atoms [Levine et al. 2019]

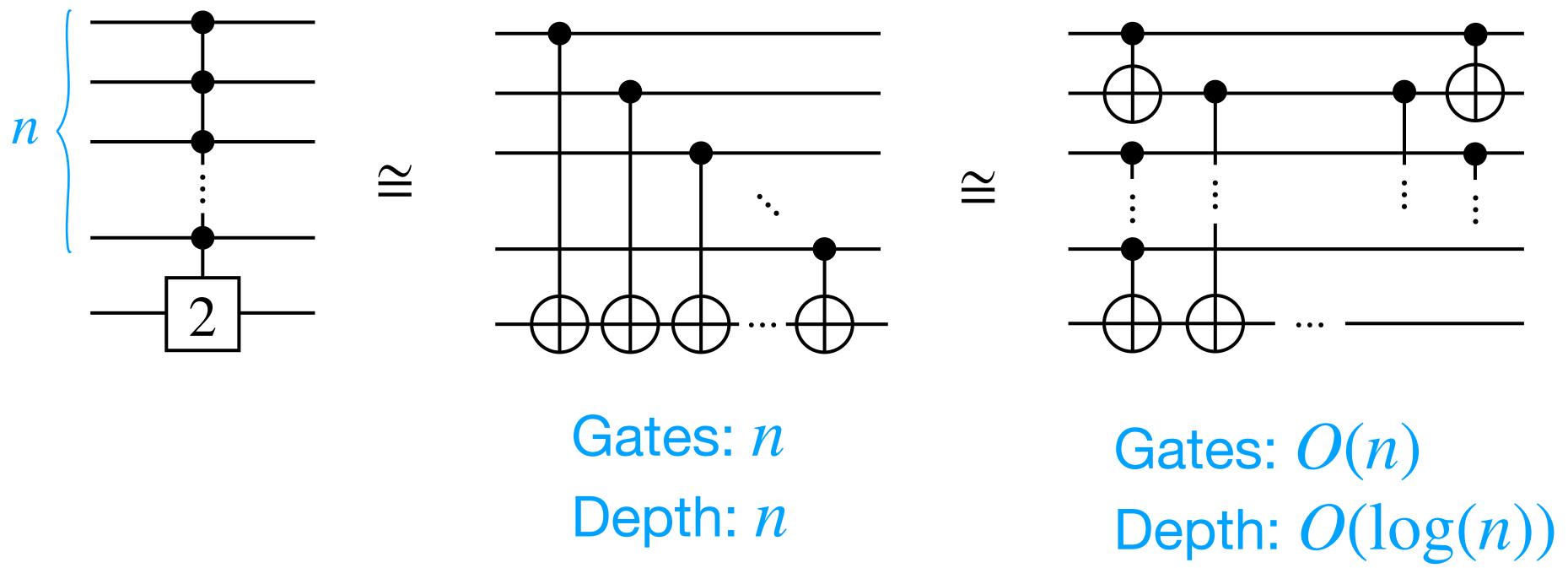
Ion Traps:

- Quantum computations with cold trapped ions [Cirac, Zoller 1995]
- Multi-particle entanglement of hot trapped ions [Mølmer, Sørensen 1999]

Large gates often have efficient small-gate decompositions

Question: What is the power of large multi-qubit gates?

Observation: Large entangling gates can be efficiently decomposed into circuits of 1- and 2-qubit gates



Large gates in constant depth

- **Experiments:** Possibility for less decoherence
 - Large gate fidelity might be better than the fidelity of the circuit composed of smaller gates

Quantum Advantage:

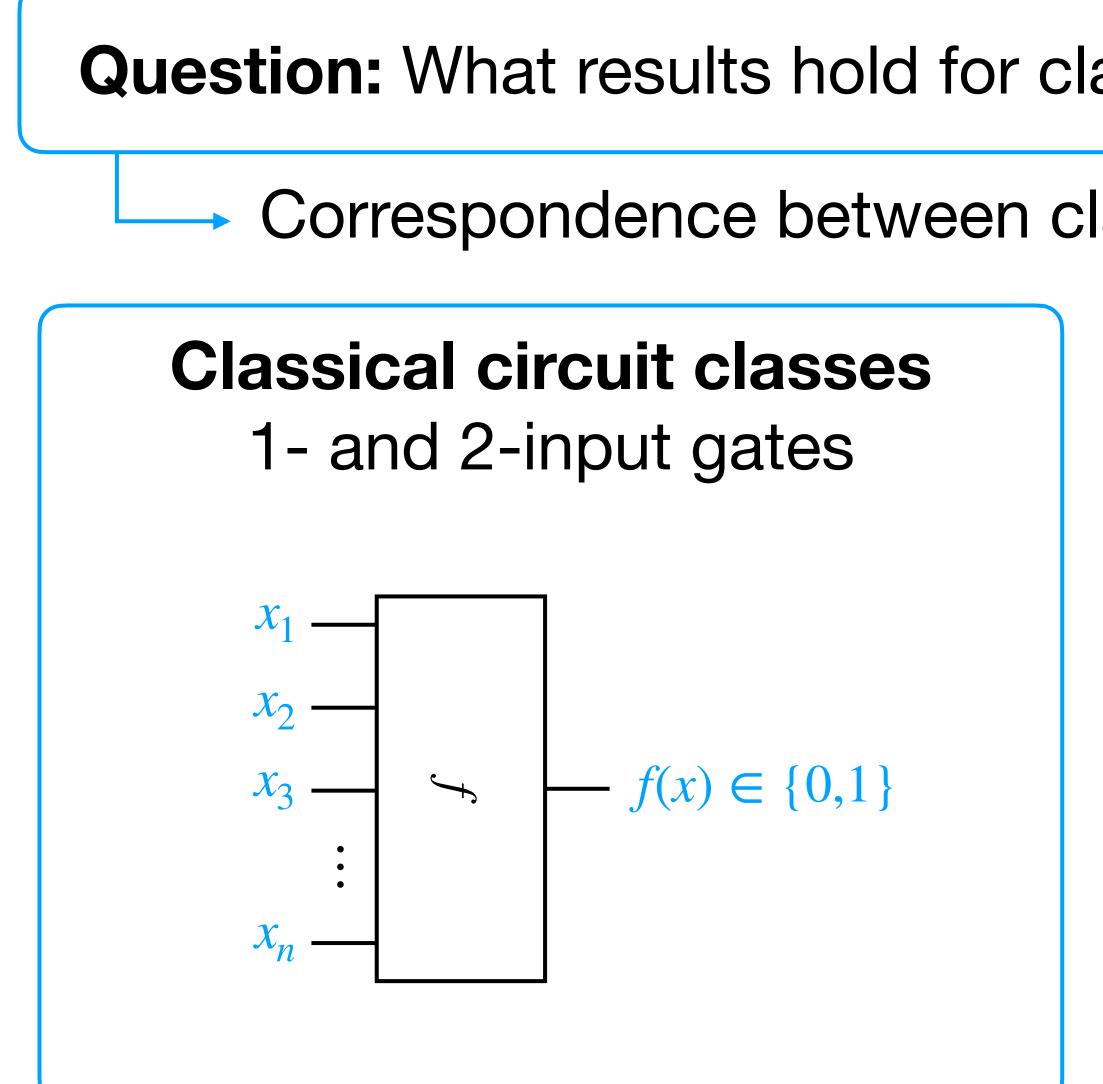
[Terhal, DiVincenzo 02]

Deep knowledge in classical setting

Question: What is the power of large multi-qubit gates in constant depth?

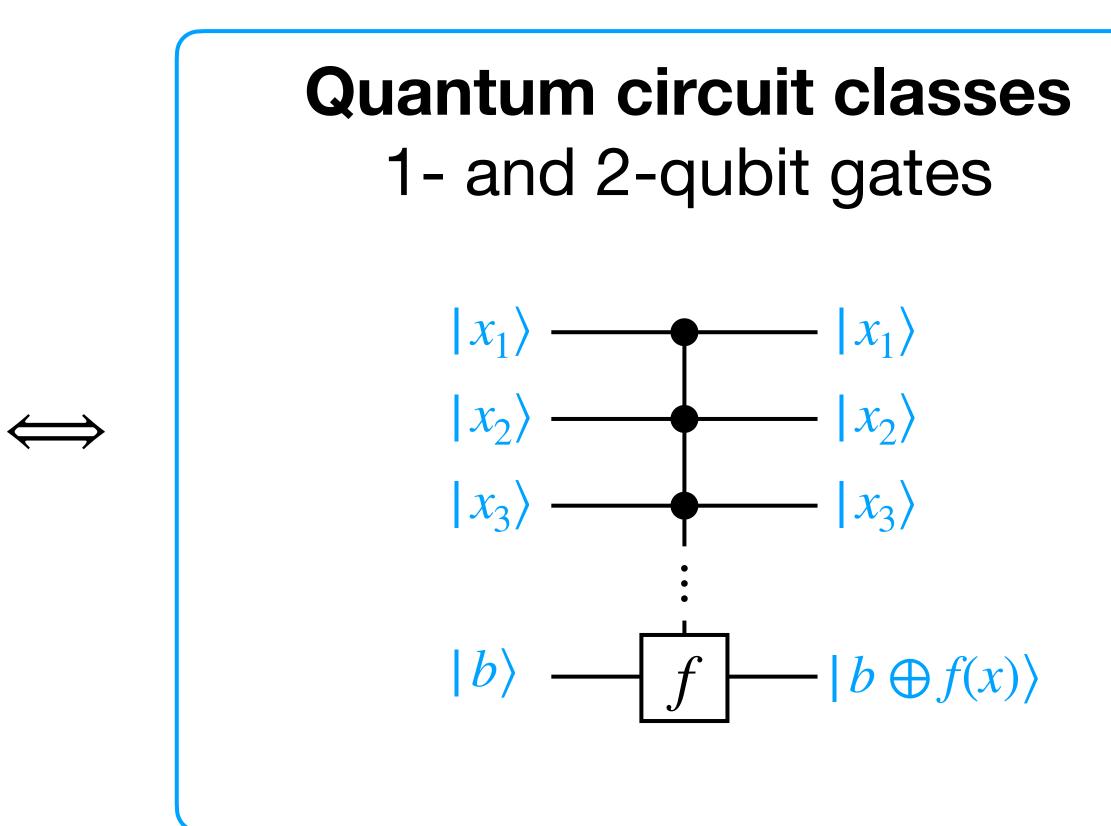
- Constant-depth quantum circuits can solve problems that constant-depth classical circuits cannot [Bravyi, Gosset, König 17]
- Exact sampling is hard unless polynomial hierarchy collapses

Quantum vs. classical circuits in constant depth

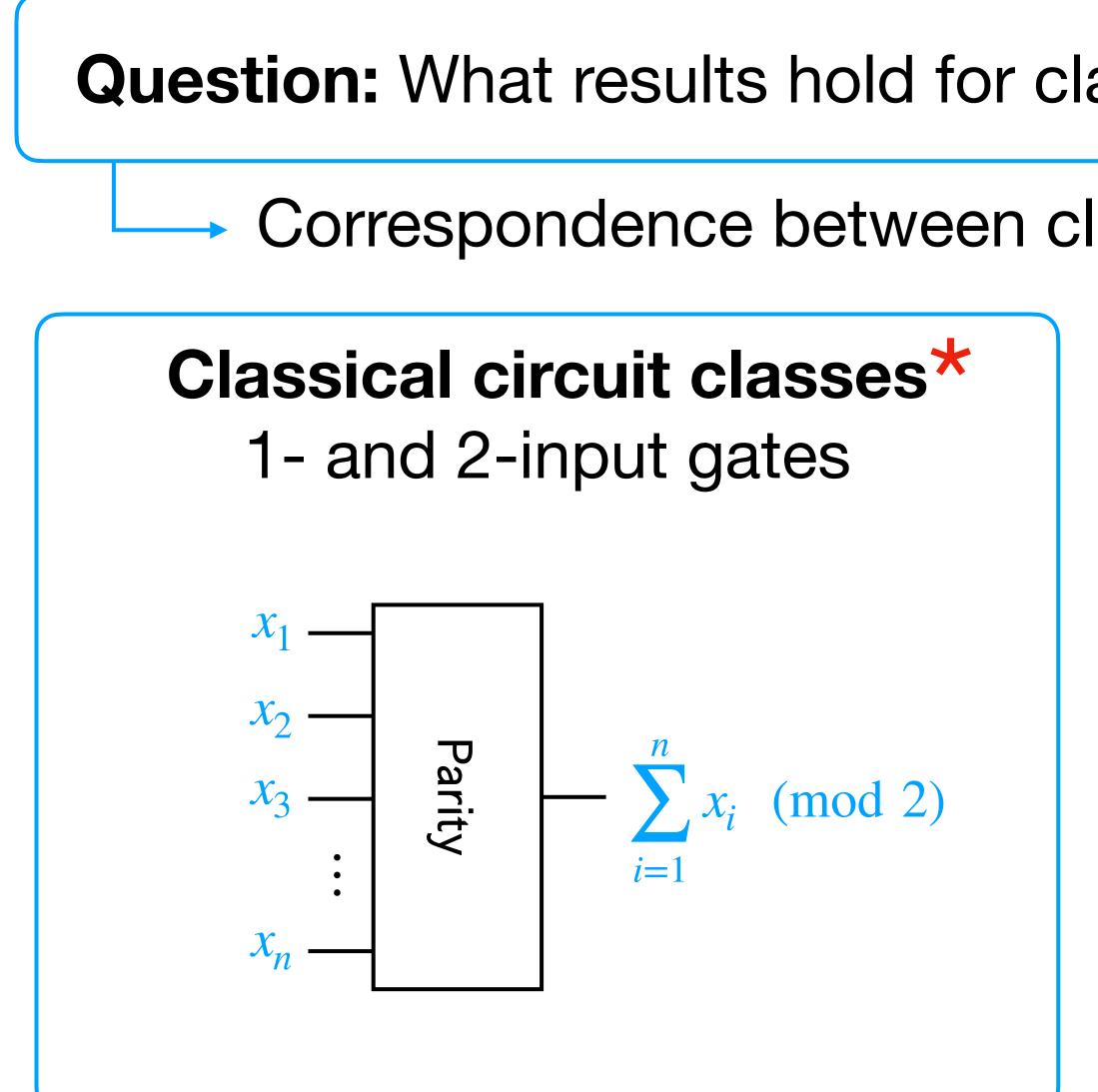


Question: What results hold for classical circuits but not quantum ones?

Correspondence between classical and quantum gate classes:



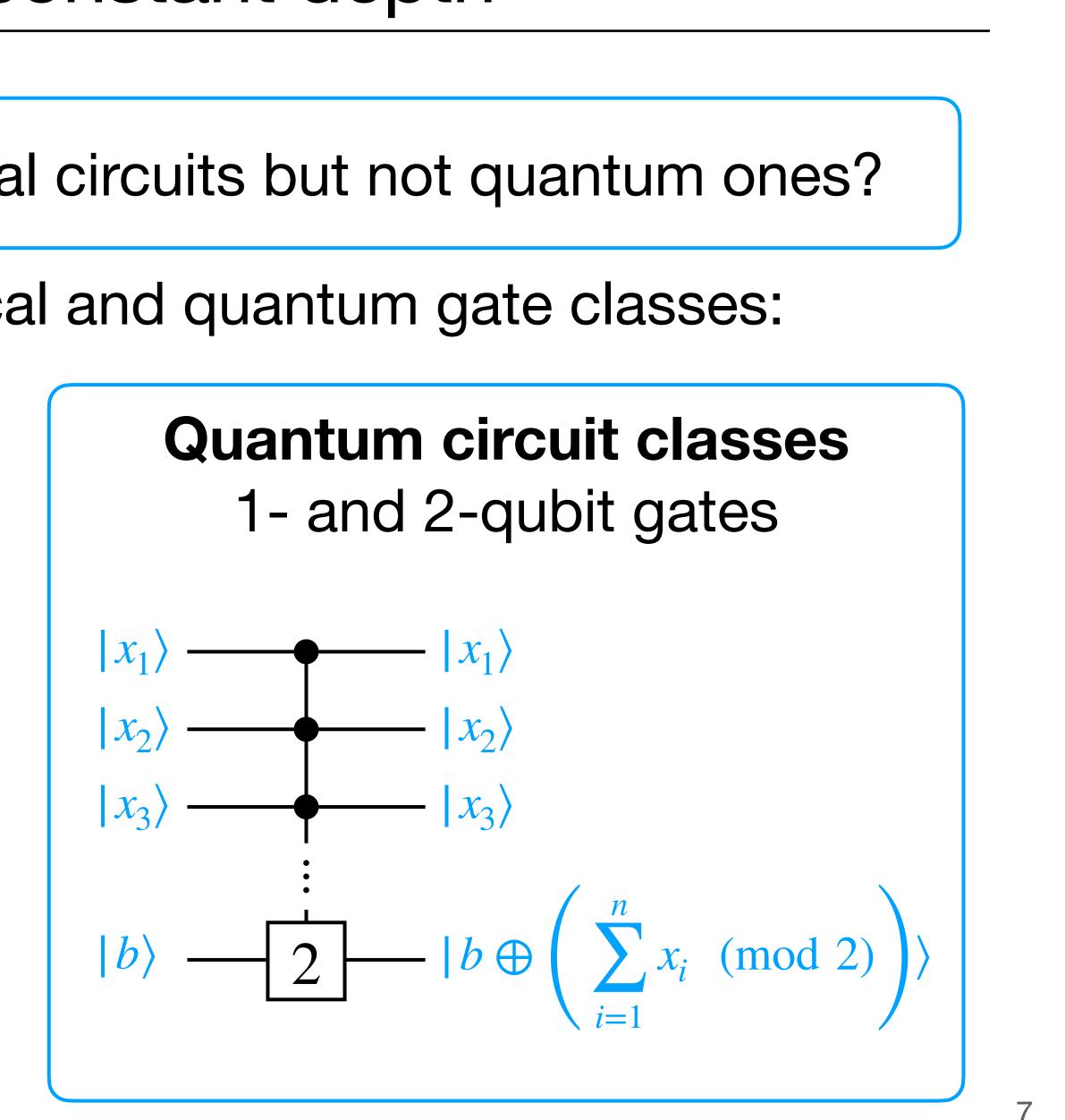
Quantum vs. classical circuits in constant depth



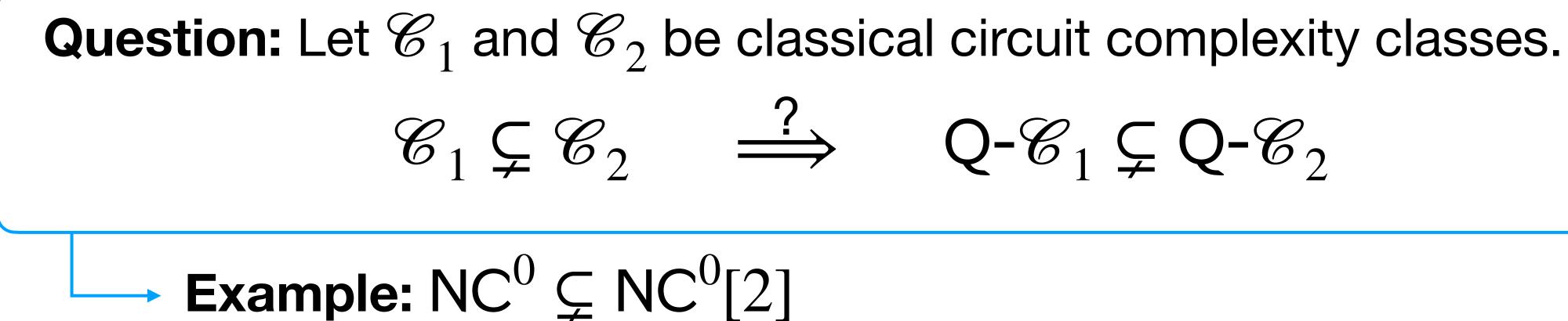
 \iff

Question: What results hold for classical circuits but not quantum ones?

Correspondence between classical and quantum gate classes:

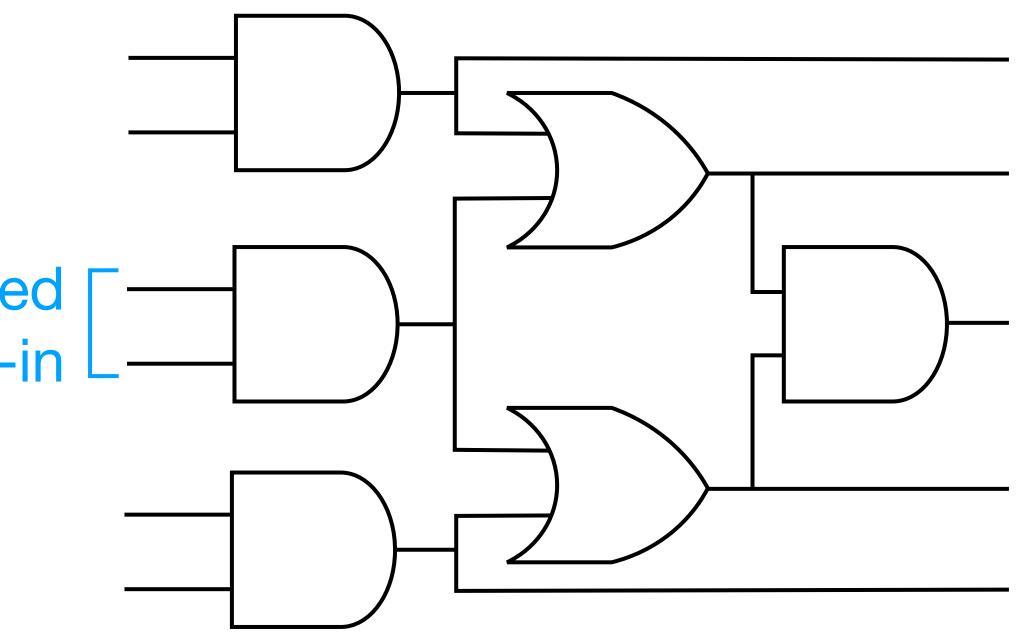


Constant depth classical circuits can't compute parity

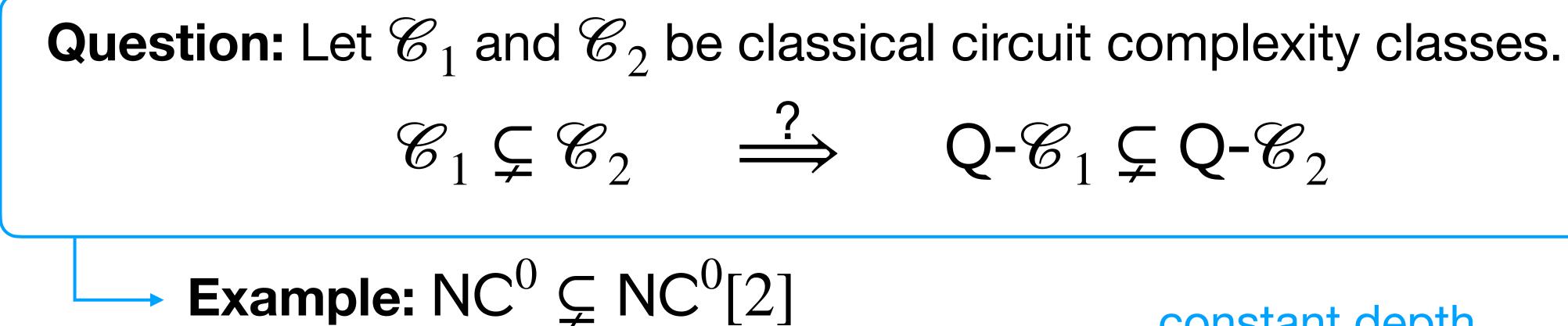


NC No large gates bounded fan-in

$$\mathbf{Q}\text{-}\mathscr{C}_1 \subsetneq \mathbf{Q}\text{-}\mathscr{C}_2$$

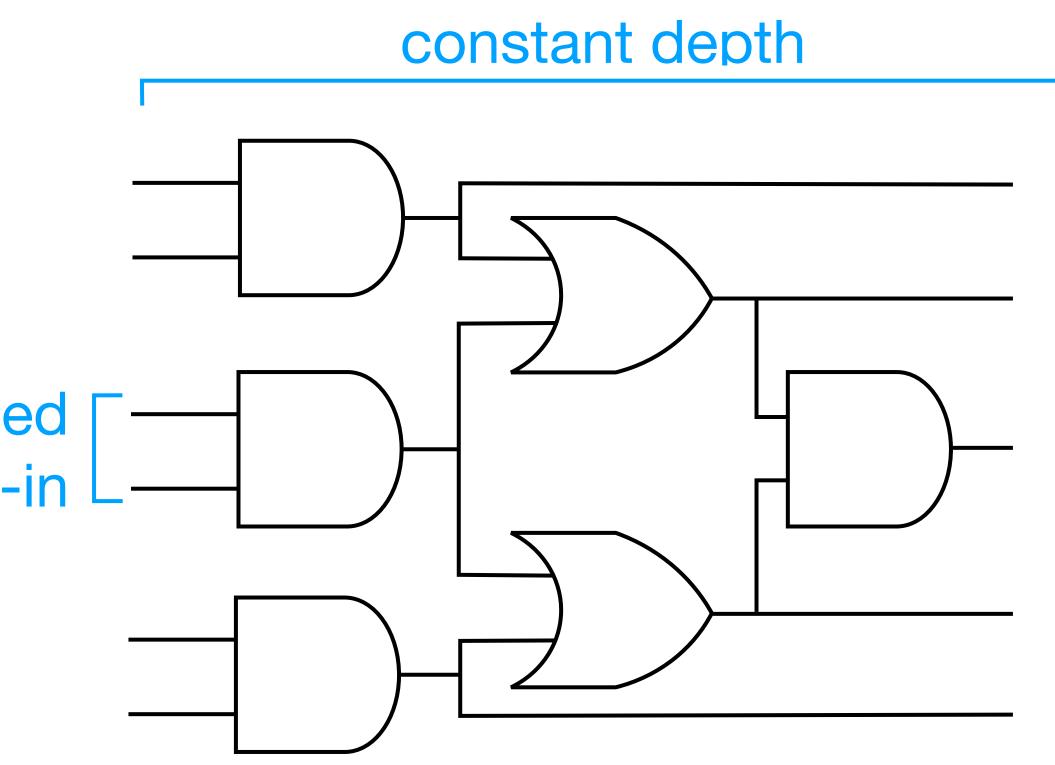


Constant depth classical circuits can't compute parity

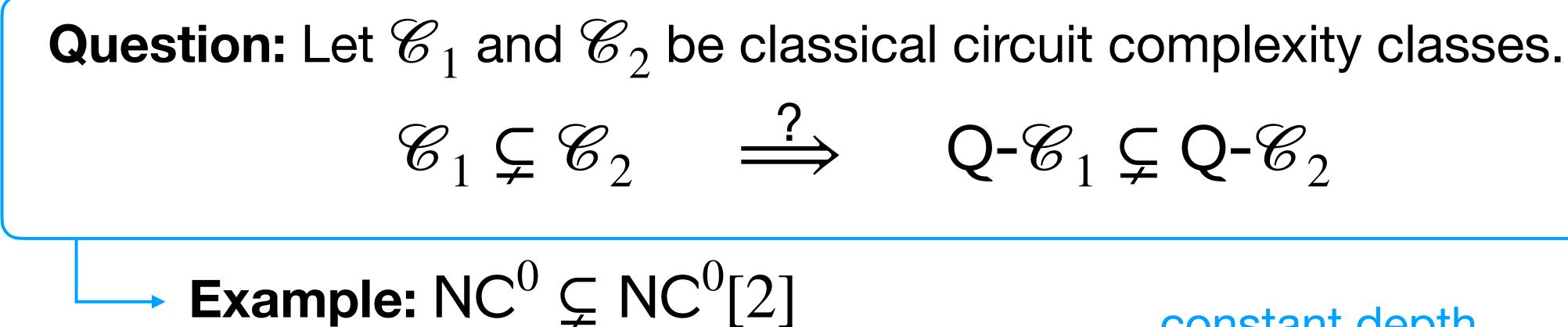


Constant depth NC No large gates

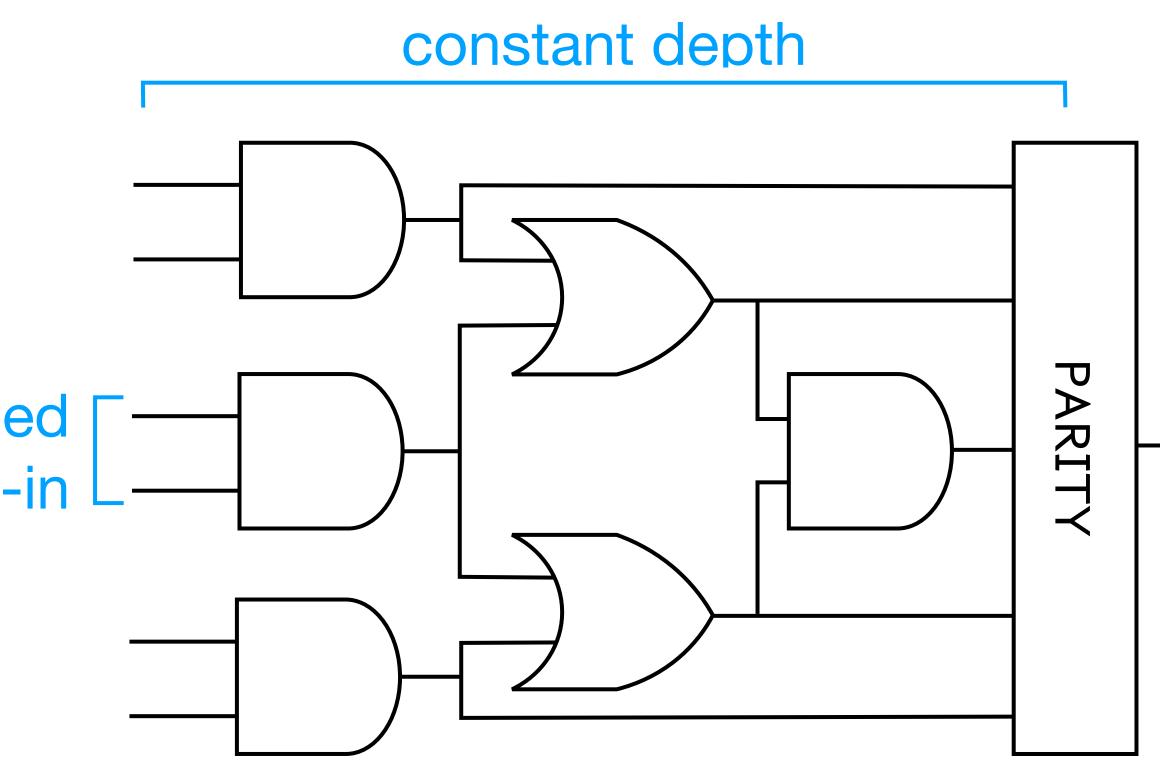
bounded fan-in



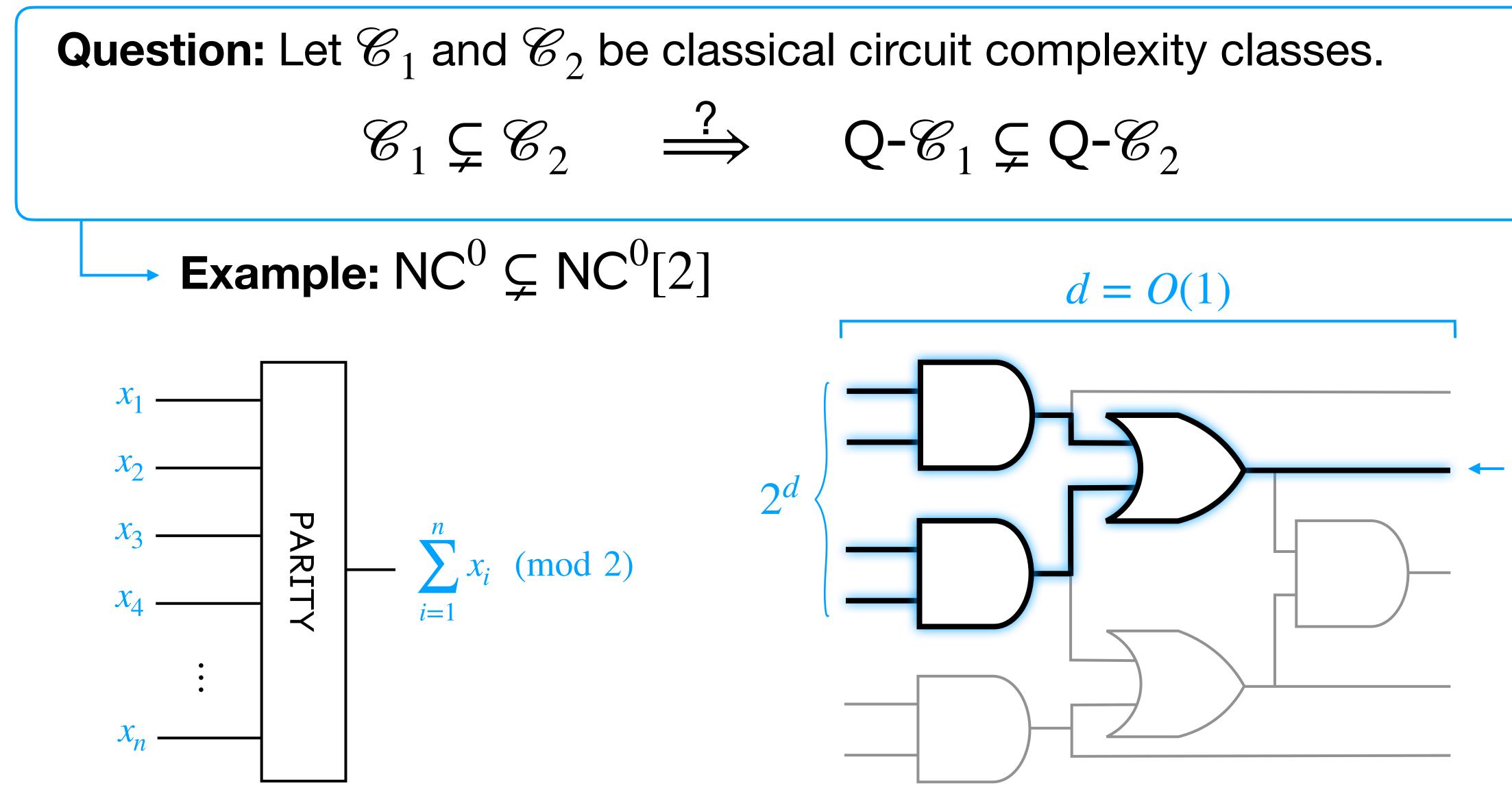
Constant depth classical circuits can't compute parity



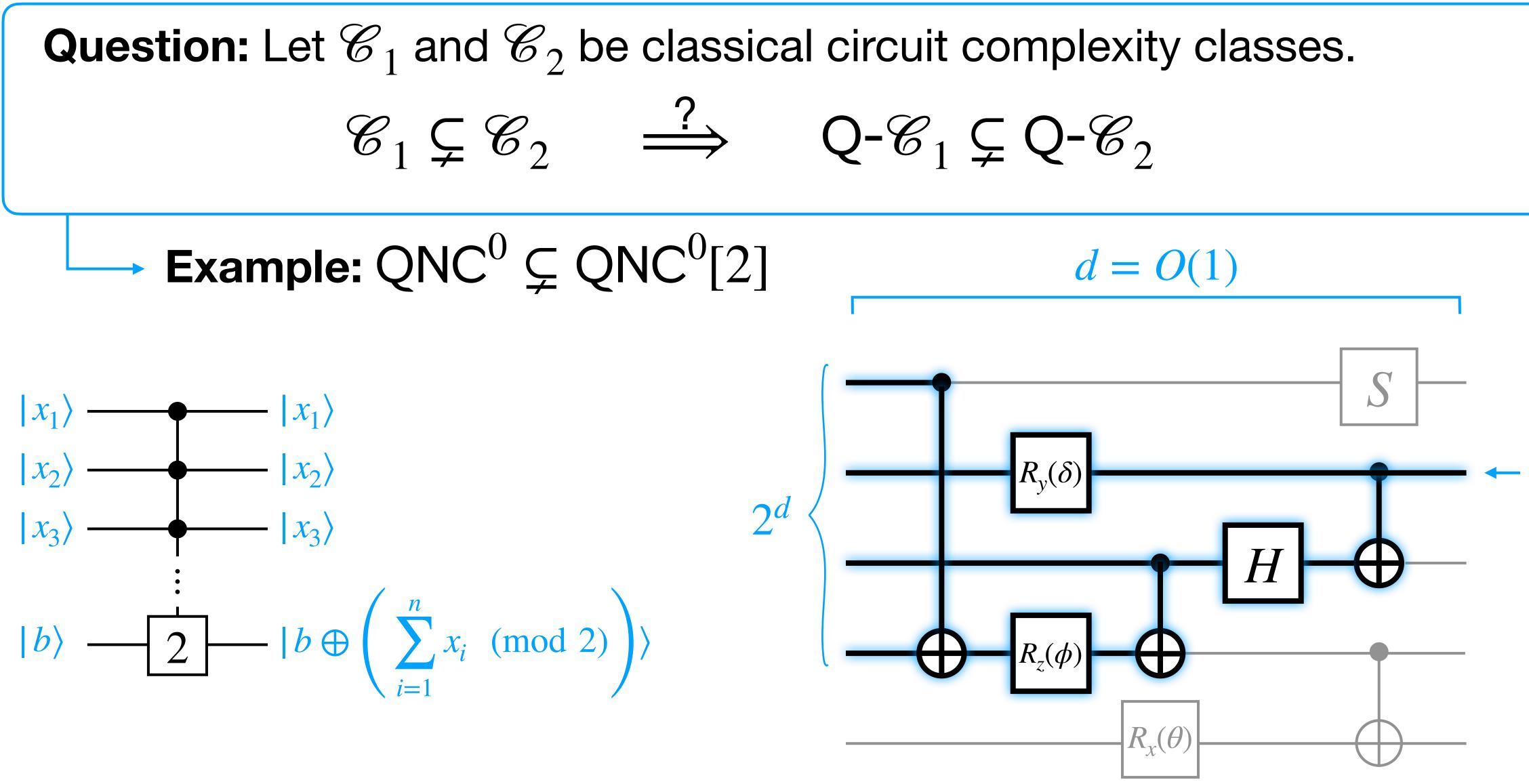
Constant depth Large – parity gates $NC^{0}[2]$ bounded fan-in No large gates



Lightcone of output bit is constant size



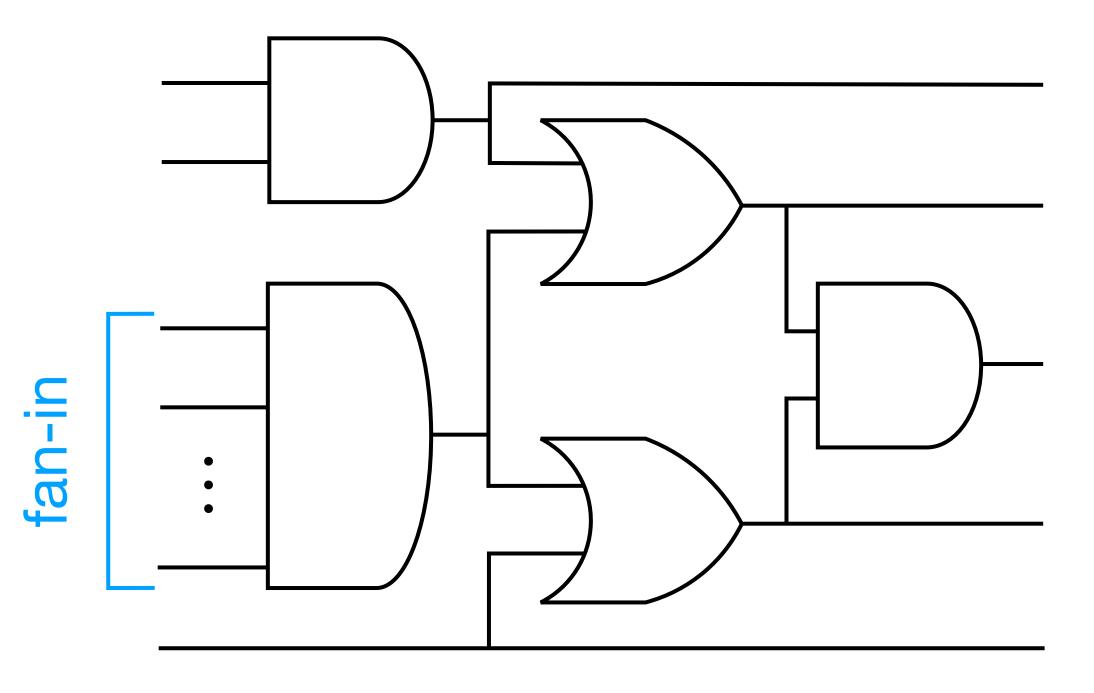
Quantum circuits are also constrained by lightcones

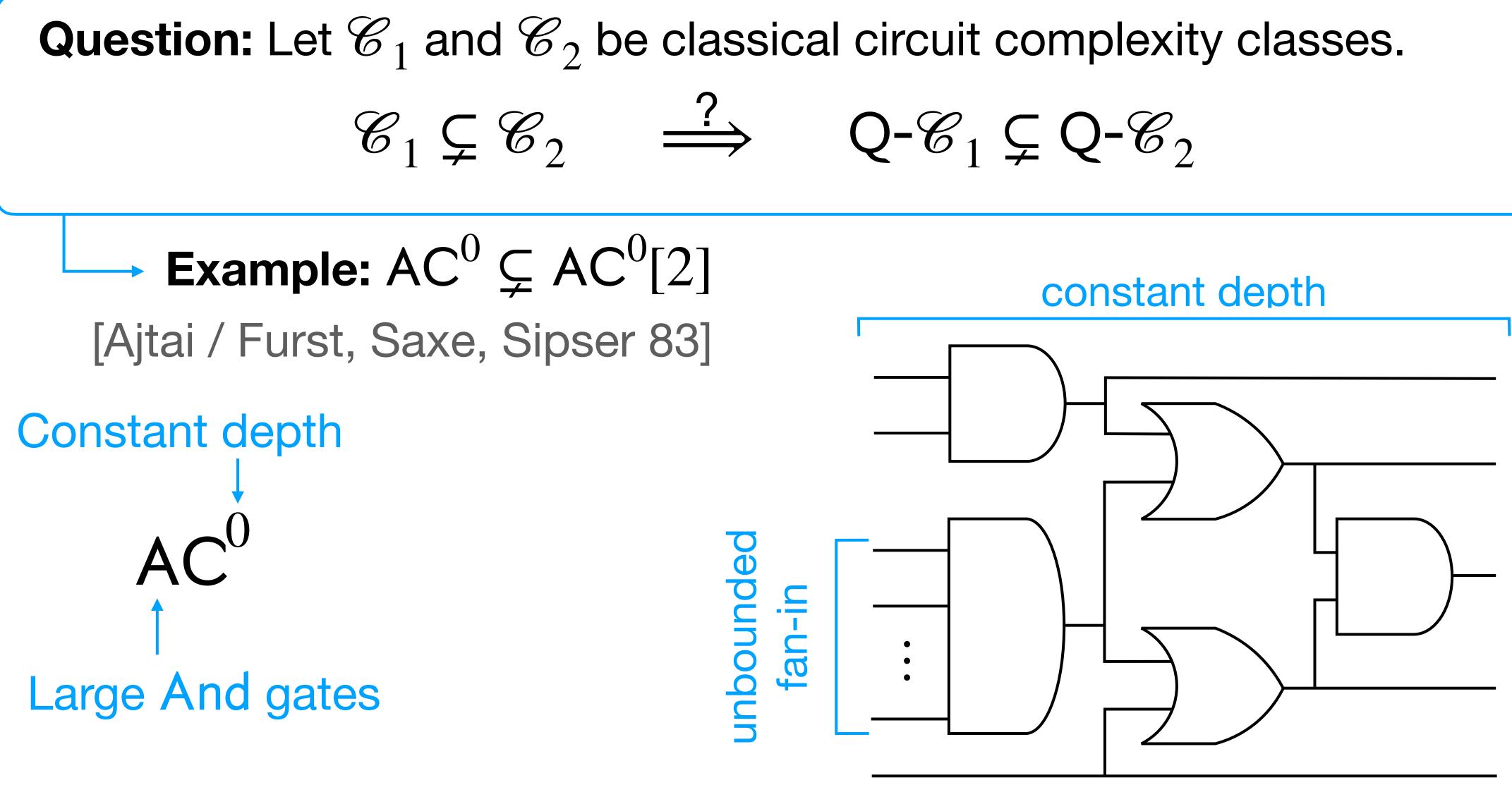


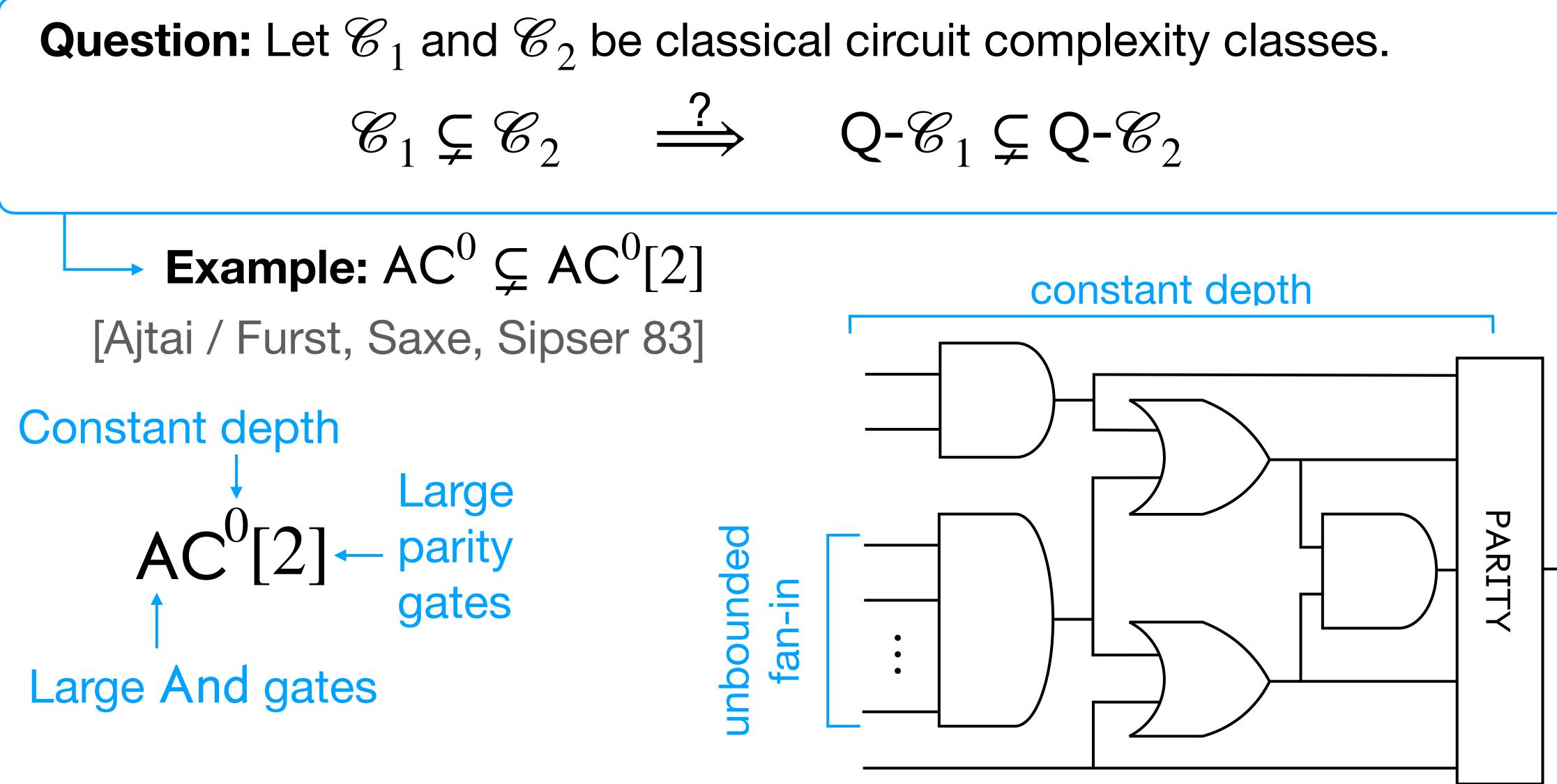
Question: Let \mathscr{C}_1 and \mathscr{C}_2 be classical circuit complexity classes. $\mathscr{C}_1 \subsetneq \mathscr{C}_2 \quad \stackrel{?}{\Longrightarrow} \quad \mathsf{Q} \ \mathscr{C}_1 \subsetneq \mathsf{Q} \ \mathscr{C}_2$

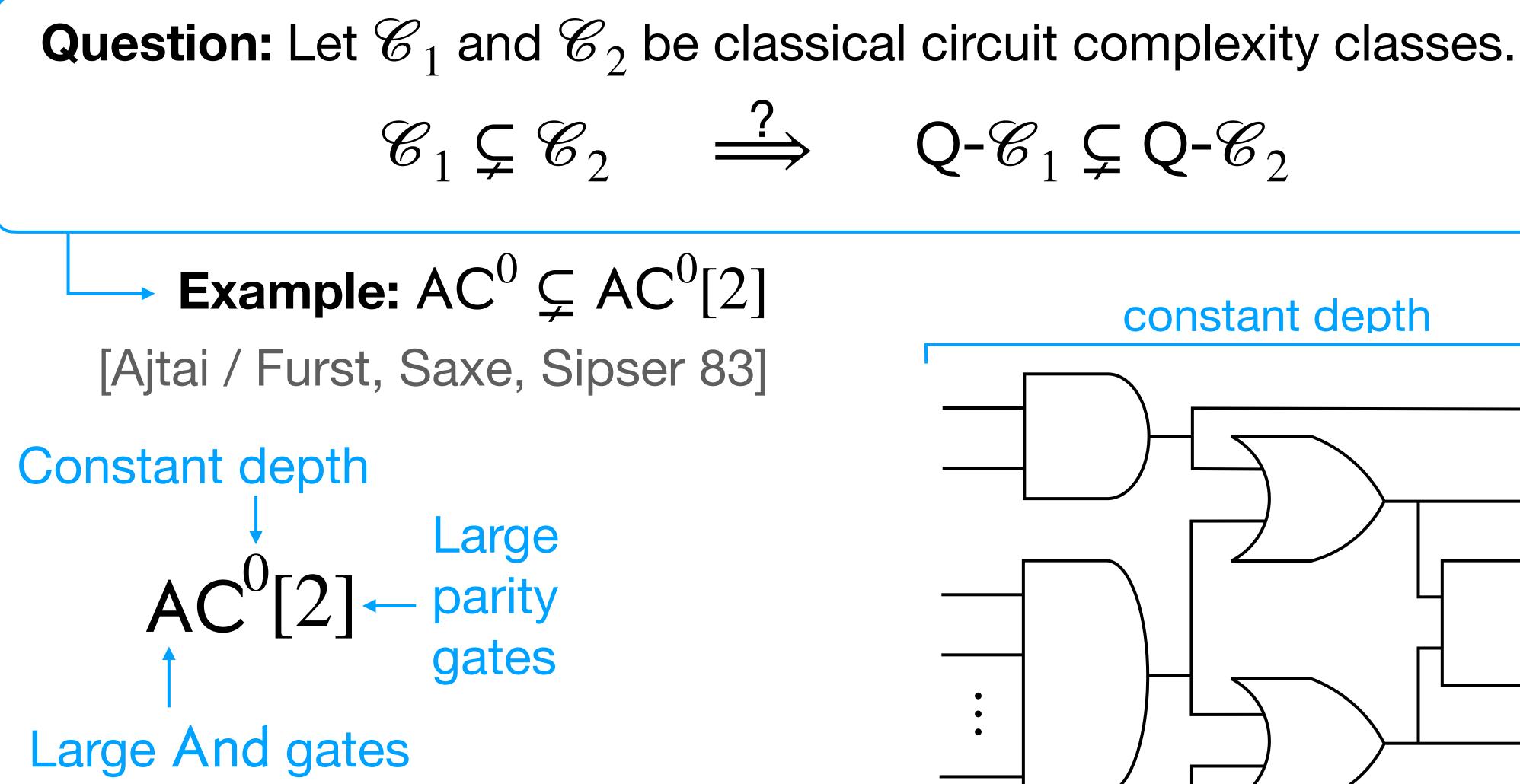
→ Example: $AC^0 \subseteq AC^0[2]$ [Ajtai / Furst, Saxe, Sipser 83]

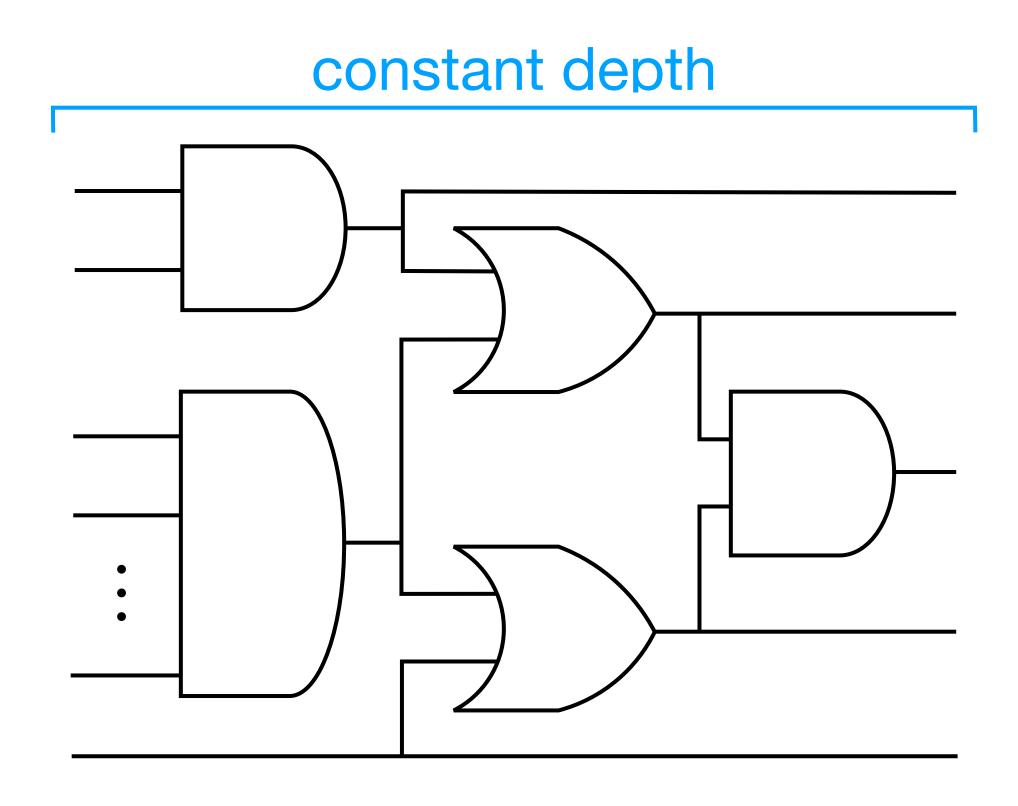
AC Large And gates

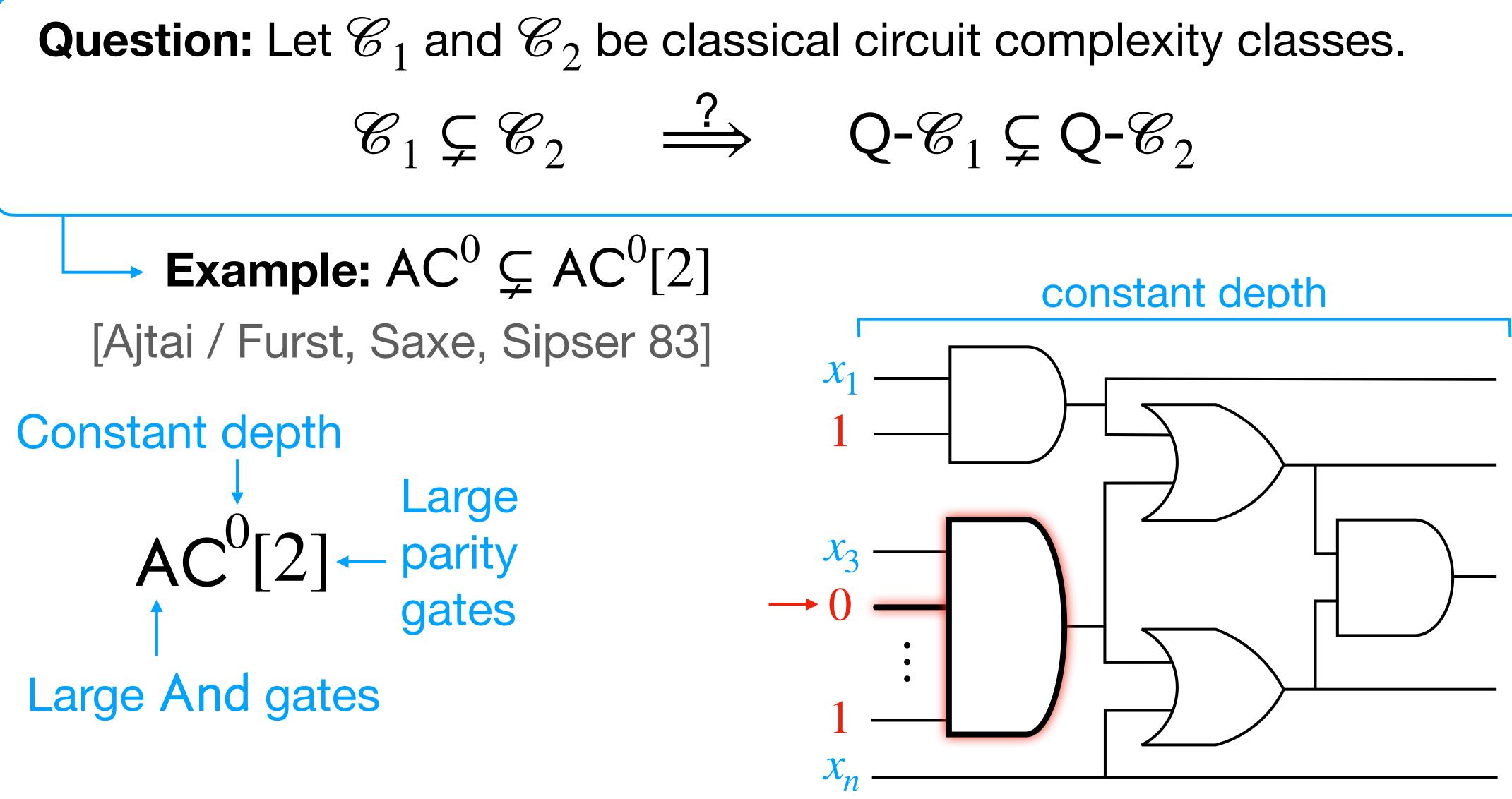


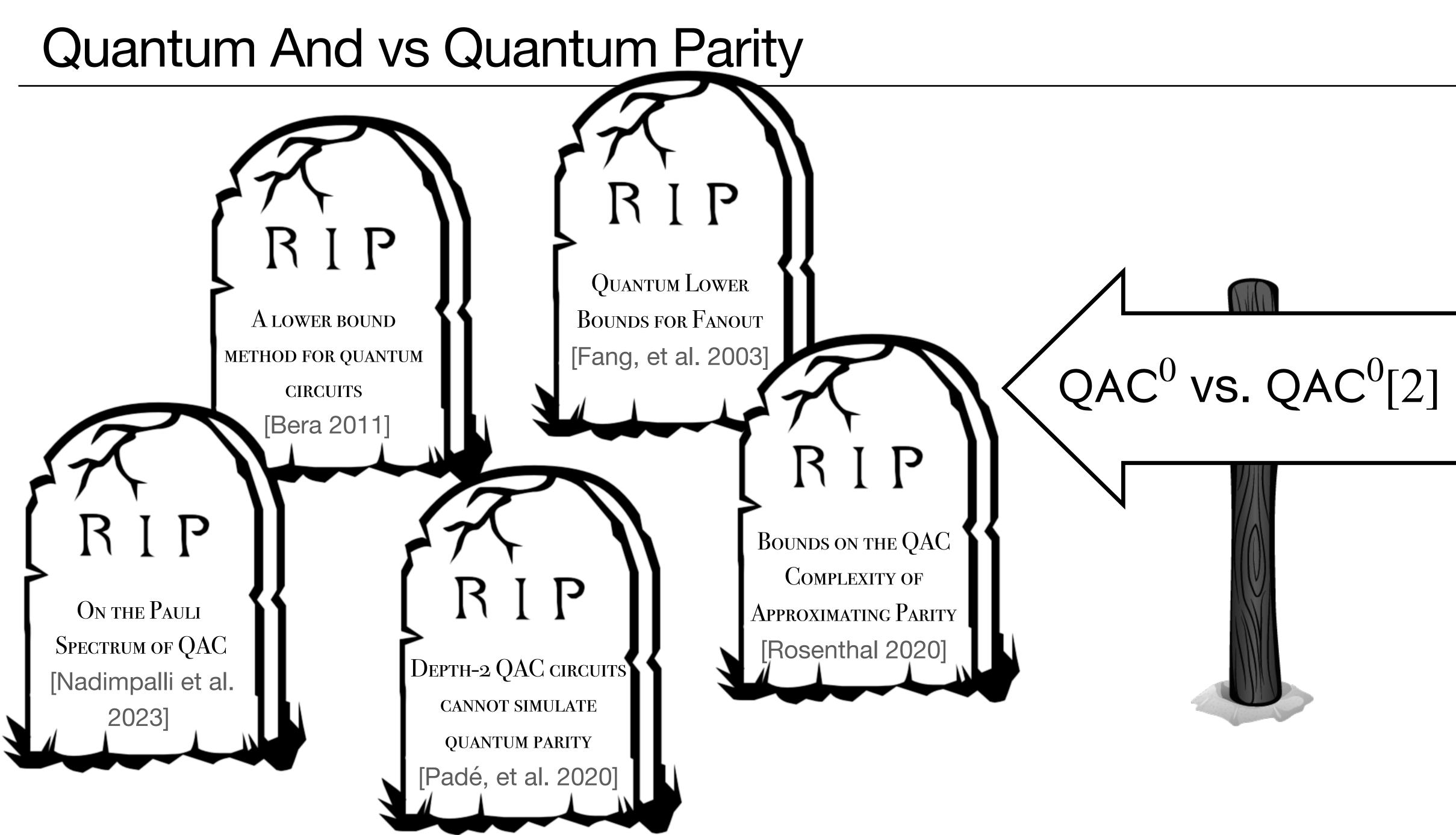










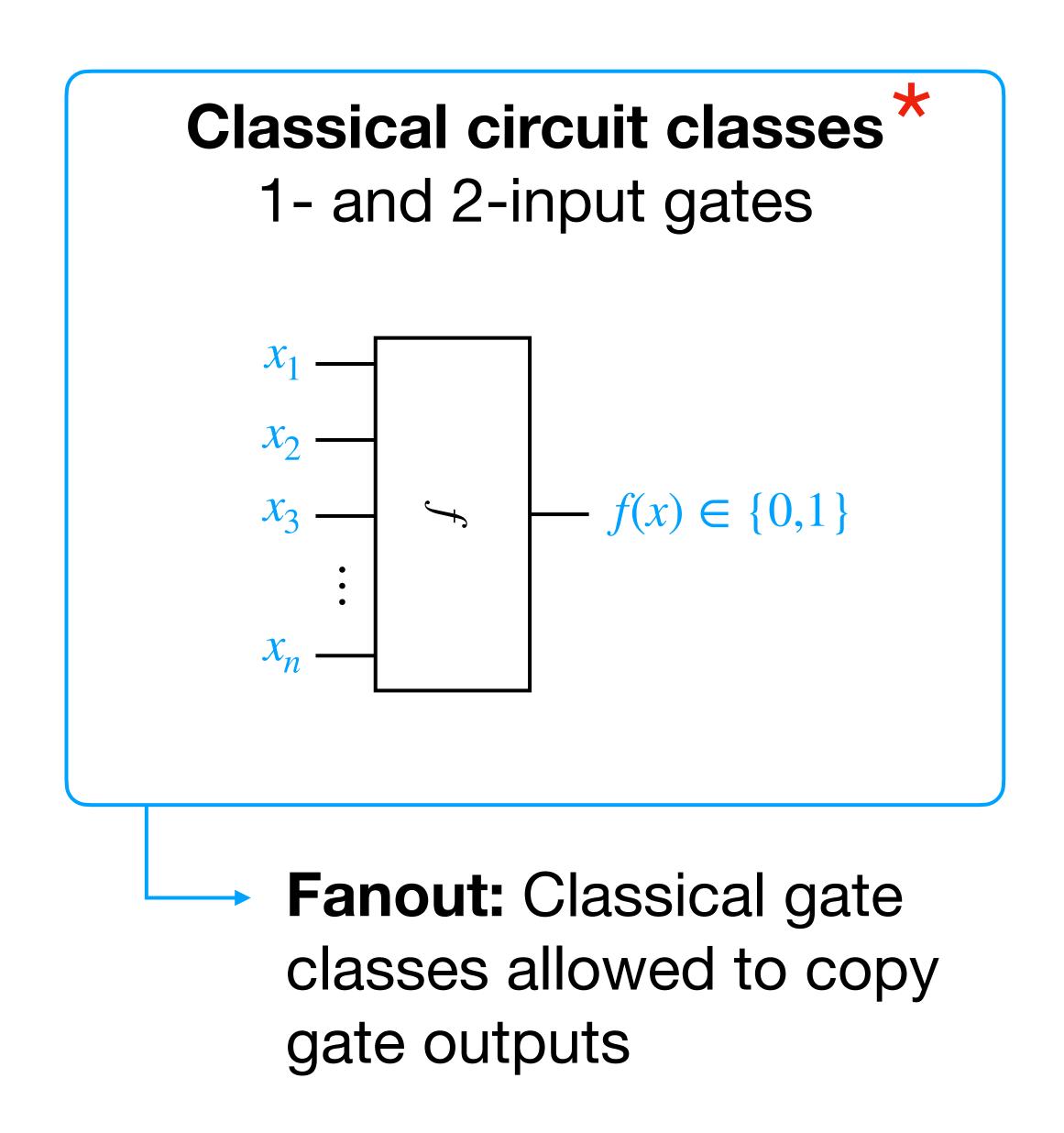


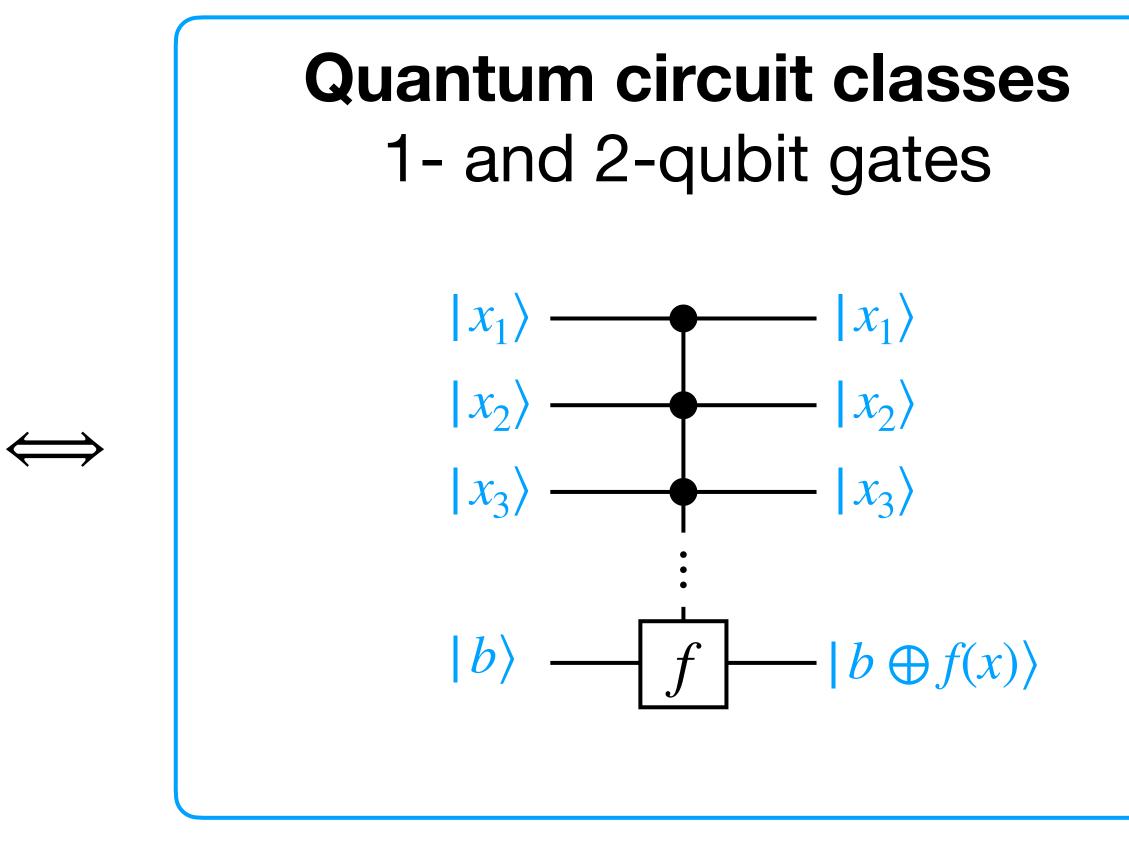
Outline

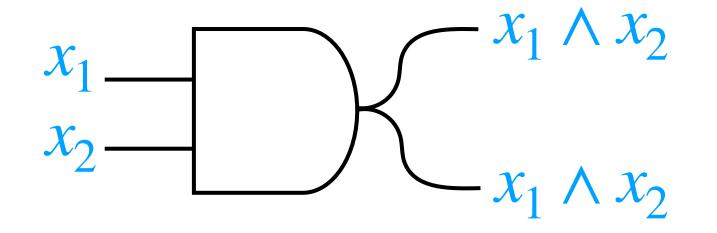
- Barrier to separations
 - Quantum constant-depth circuits are powerful
 - The surprising relevance of Fanout and Parity
- Maybe we should look for other powerful gates...

Quantum Majority is powerful

Correspondence between classical and quantum gate classes

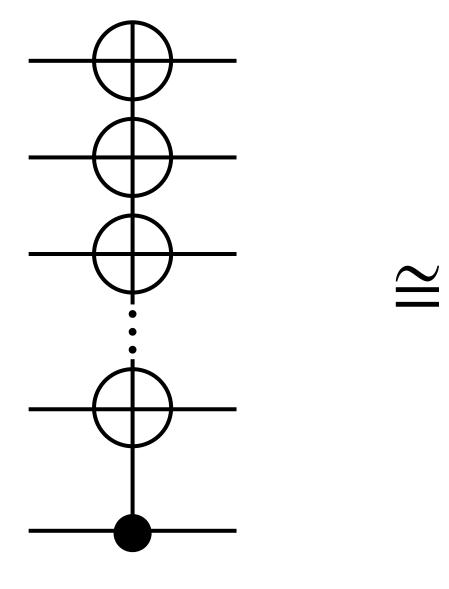




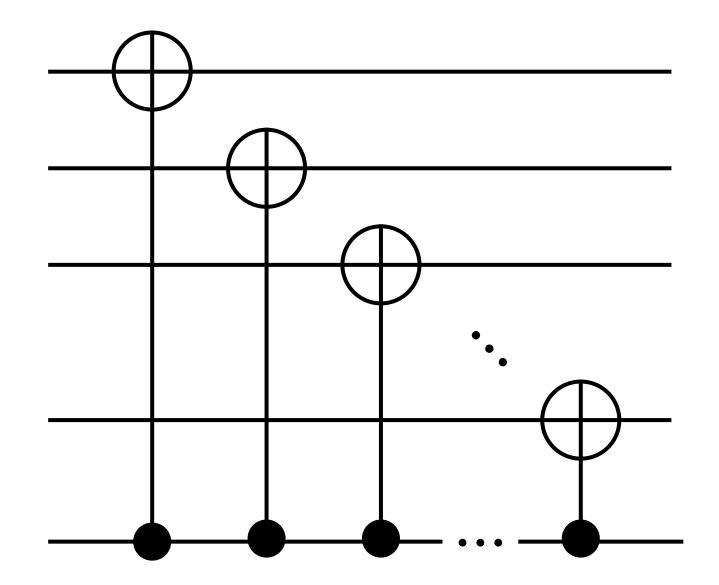


Quantum Fanout

Fanout
$$| b, x_1, x_2, ..., x_n$$



 $\langle x_n \rangle = |b, x_1 \oplus b, \dots, x_n \oplus b \rangle$



1	6

Quantum Fanout is scary

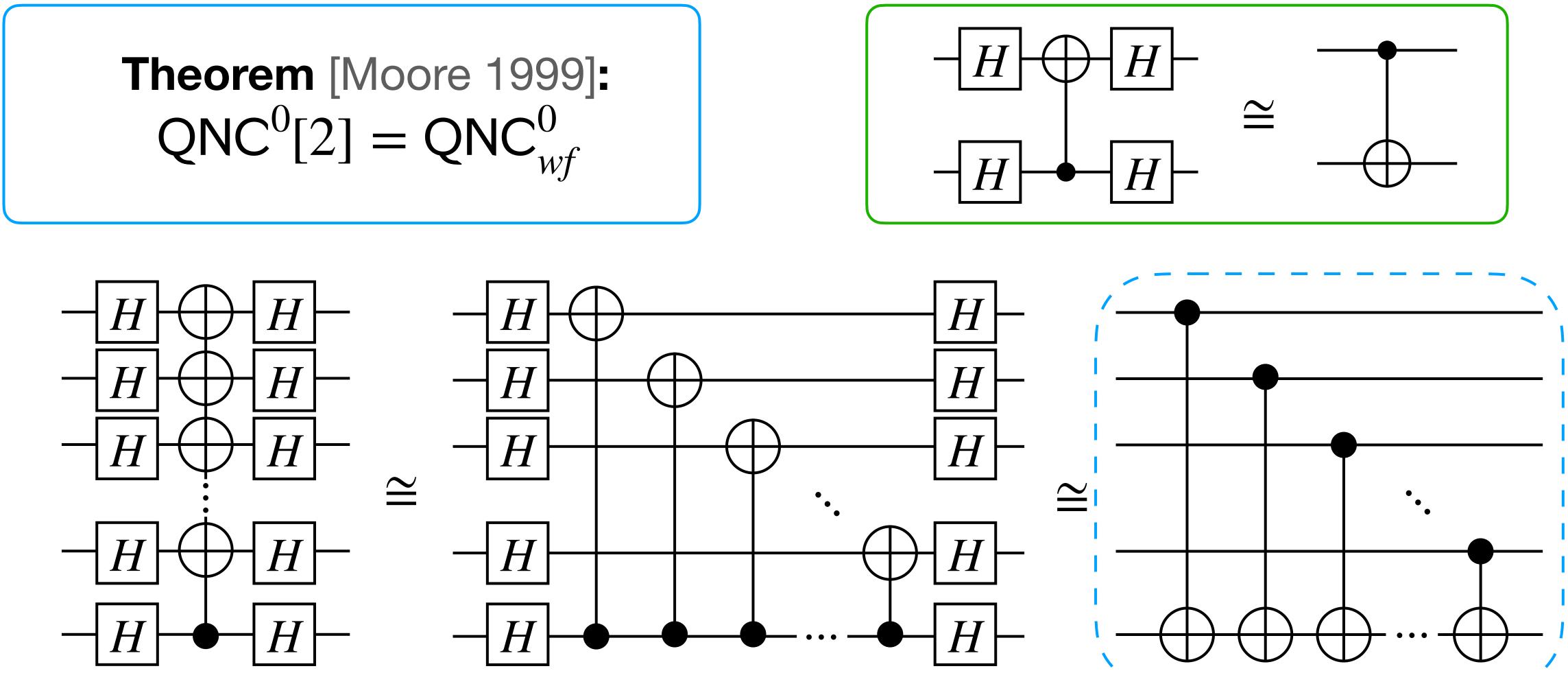
- $\rightarrow (H^{\otimes n}) \cdot \text{Fanout} \cdot (H^{\otimes n}) = \text{Parity}$

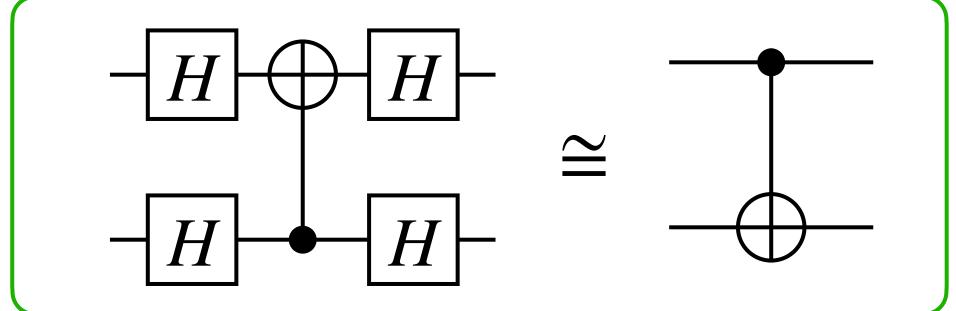
Recall: $AC^0 \subseteq AC[2]$

Classical fanout does not imply Parity

Constant-depth quantum circuits with Fanout can compute Parity

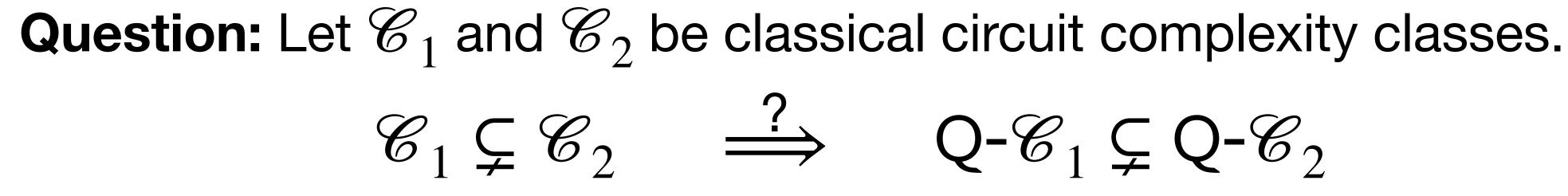
Quantum Fanout implies Quantum Parity





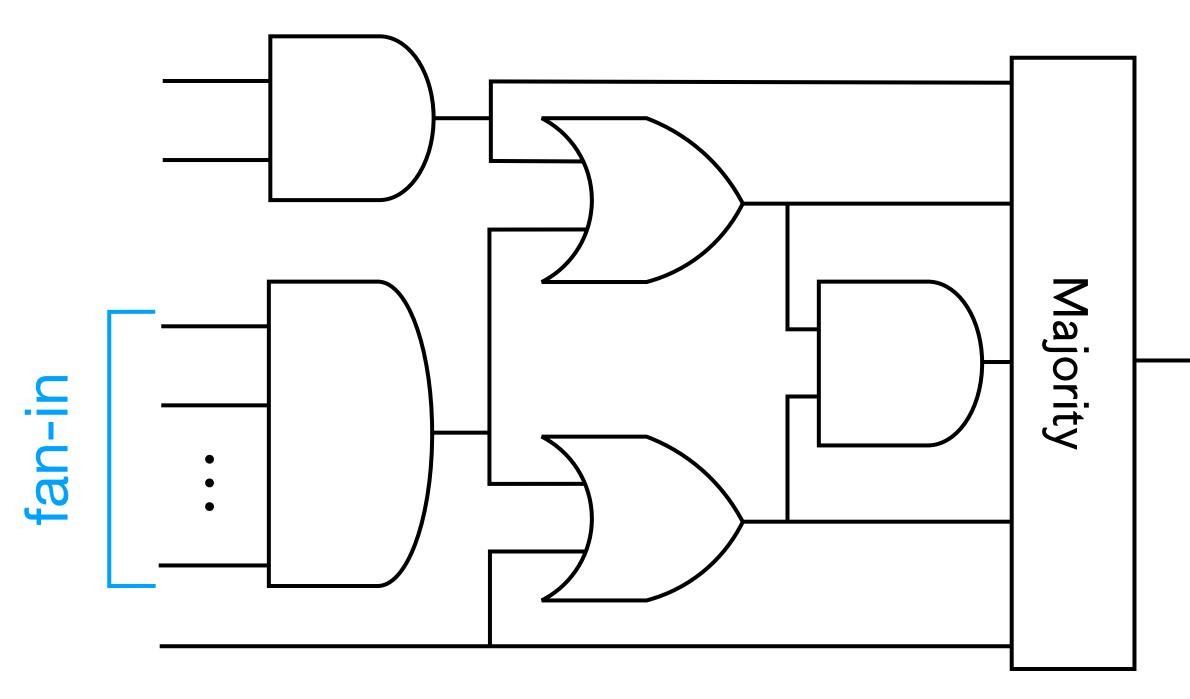
Parity!

Let's try another separation...

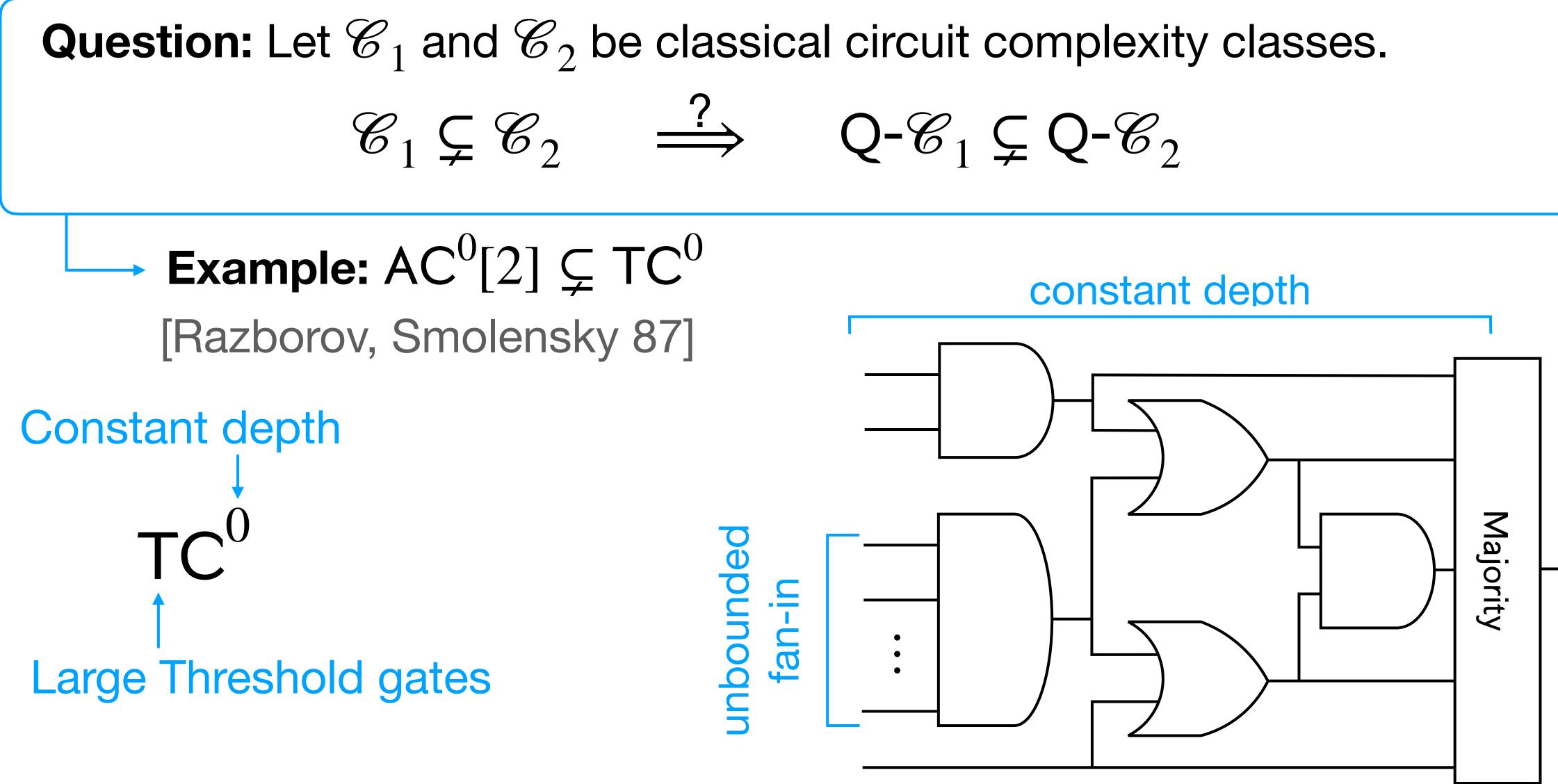


- **Example:** $AC^0[2] \subseteq TC^0$ [Razborov, Smolensky 87]

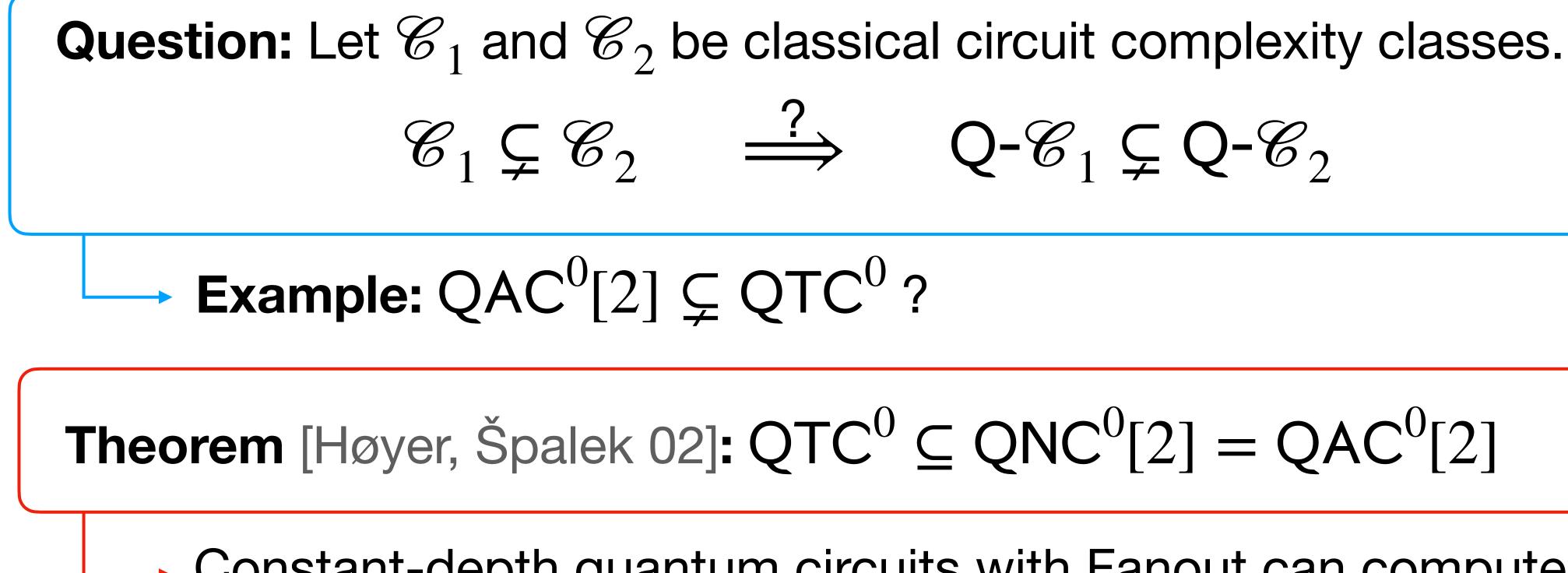
TC Large Threshold gates



Let's try another separation...



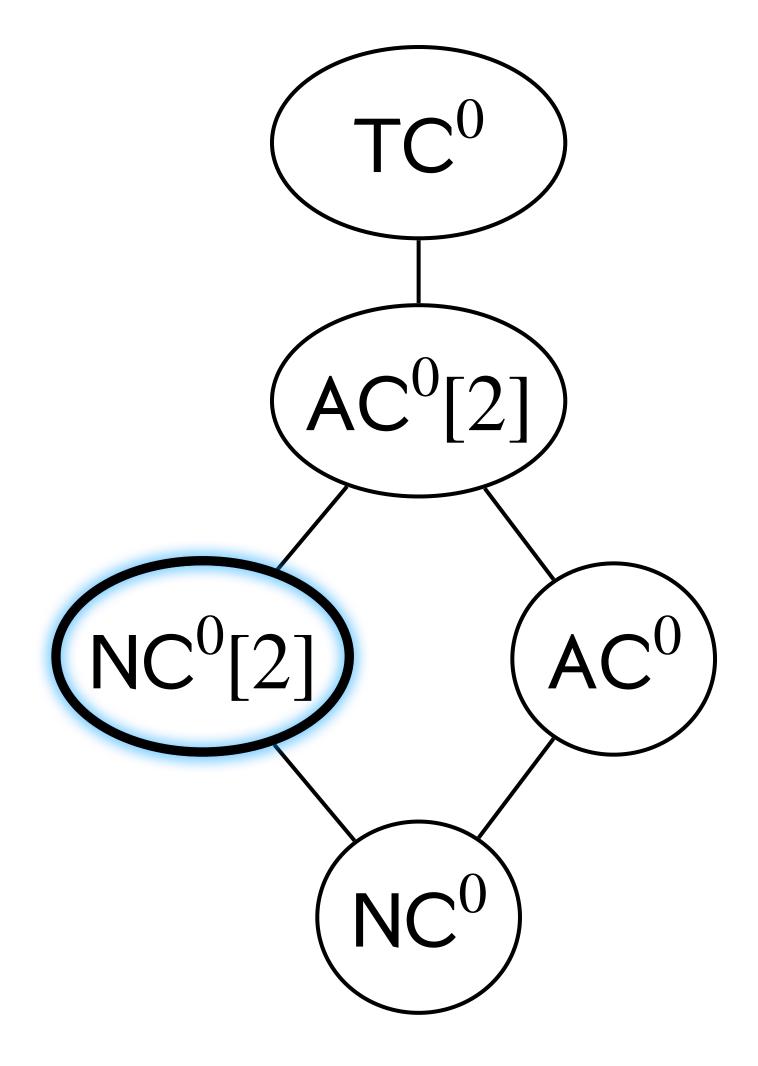
Fanout is powerful...



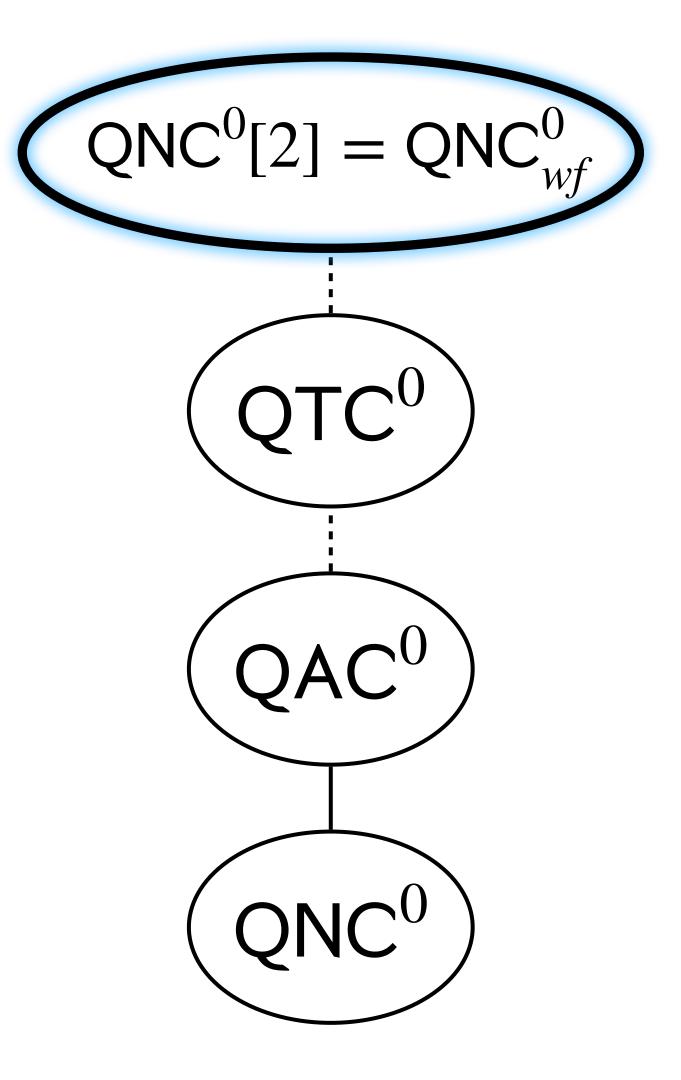
$$\mathbf{Q}\text{-}\mathscr{C}_1 \subsetneq \mathbf{Q}\text{-}\mathscr{C}_2$$

Constant-depth quantum circuits with Fanout can compute Threshold

Low-depth complexity classes recap

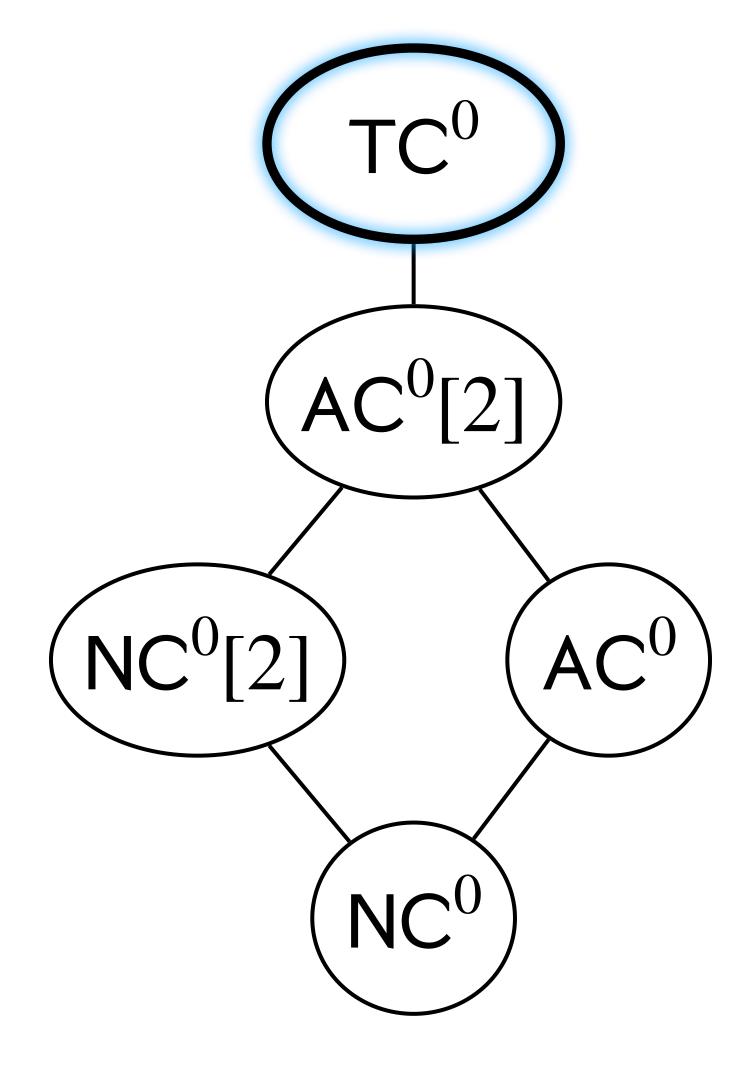


Classical

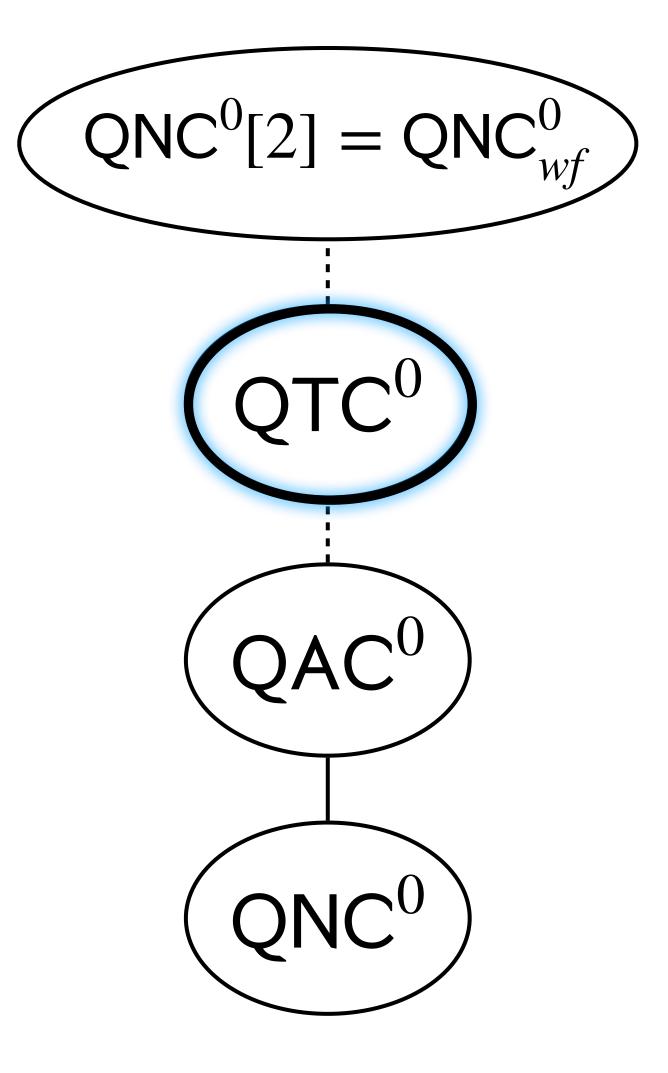


Quantum

Low-depth complexity classes recap



Classical



Quantum

Quantum Majority is powerful

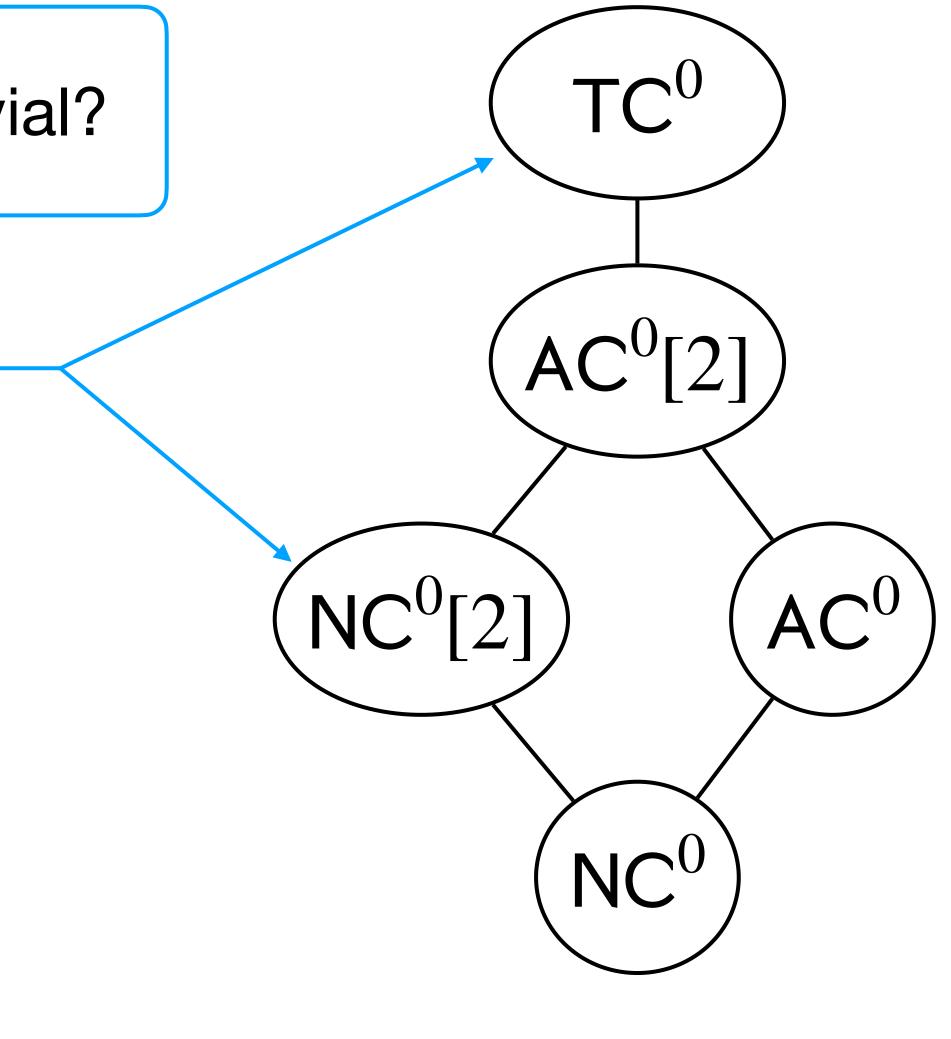
- **Theorem** [G, Morris]: $QNC^{0}[2] \subseteq QTC^{0}$
 - Constant-depth quantum circuits with Majority can compute Parity
 - Caveat: construction is approximate (inverse-poly precision)
 - [Høyer, Špalek 2002] construction also approximate
 - Made exact by [Takahashi, Tani 2011]
 - Anti-Caveat: construction applies to a generalization of Majority
 - Seem useless in the classical setting, but computes Parity in the quantum setting

J	

Classical Threshold gates can compute Parity

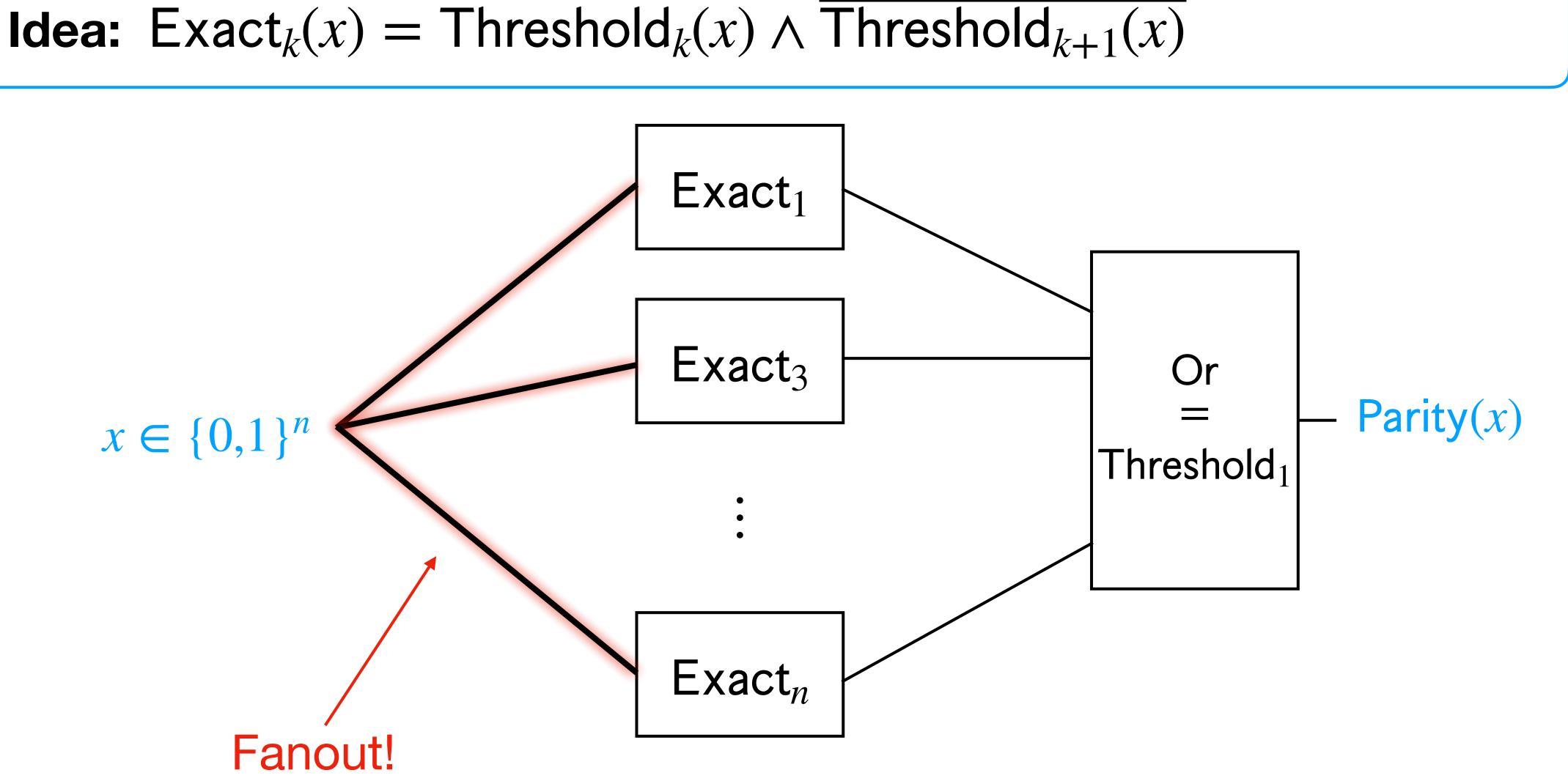
Question: Why isn't this result trivial?

Classical Threshold gates can compute Parity



Classical

Classical Threshold gates can compute Parity



Quantum Majority implies Parity — Proof Outline

- **Theorem** [G, Morris]: $QNC^{0}[2] \subseteq QTC^{0}$

 - *Proof Outline:* (following [Rosenthal 20])
 - 1) Cat state generation implies Fanout
 - 2) Give a construction for a Cat state

Constant-depth quantum circuits with Majority can compute Parity

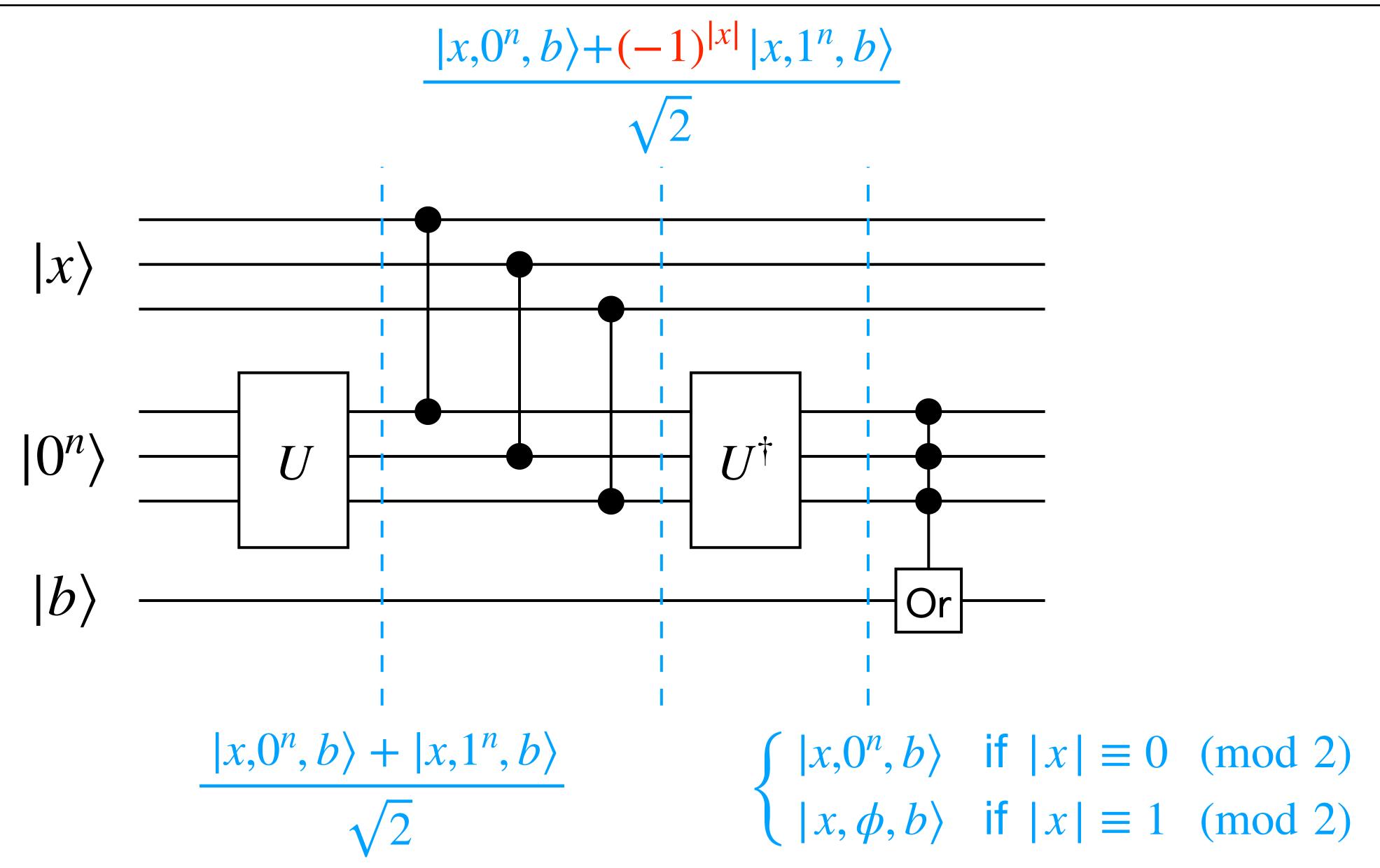
Ingredient 1: Cat state creation implies Parity

such that

in constant depth. Then, using Quantum Or gates and U, U^{\dagger} gates you can implement Parity in constant depth.

- **Theorem** [Moore 1999]: Suppose you can implement unitaries U and U^{\dagger} $U|0^n\rangle = \frac{|0^n\rangle + |1^n\rangle}{\sqrt{2}}$

Ingredient 1: Cat state creation implies Parity



Ingredient 1: Cat state creation implies Parity

such that

can implement Parity in constant depth.

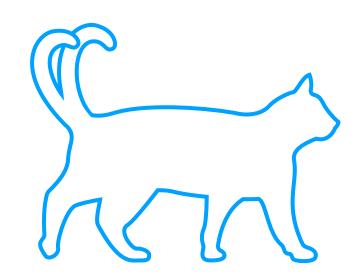
- Also works when $U|0^n\rangle = -$

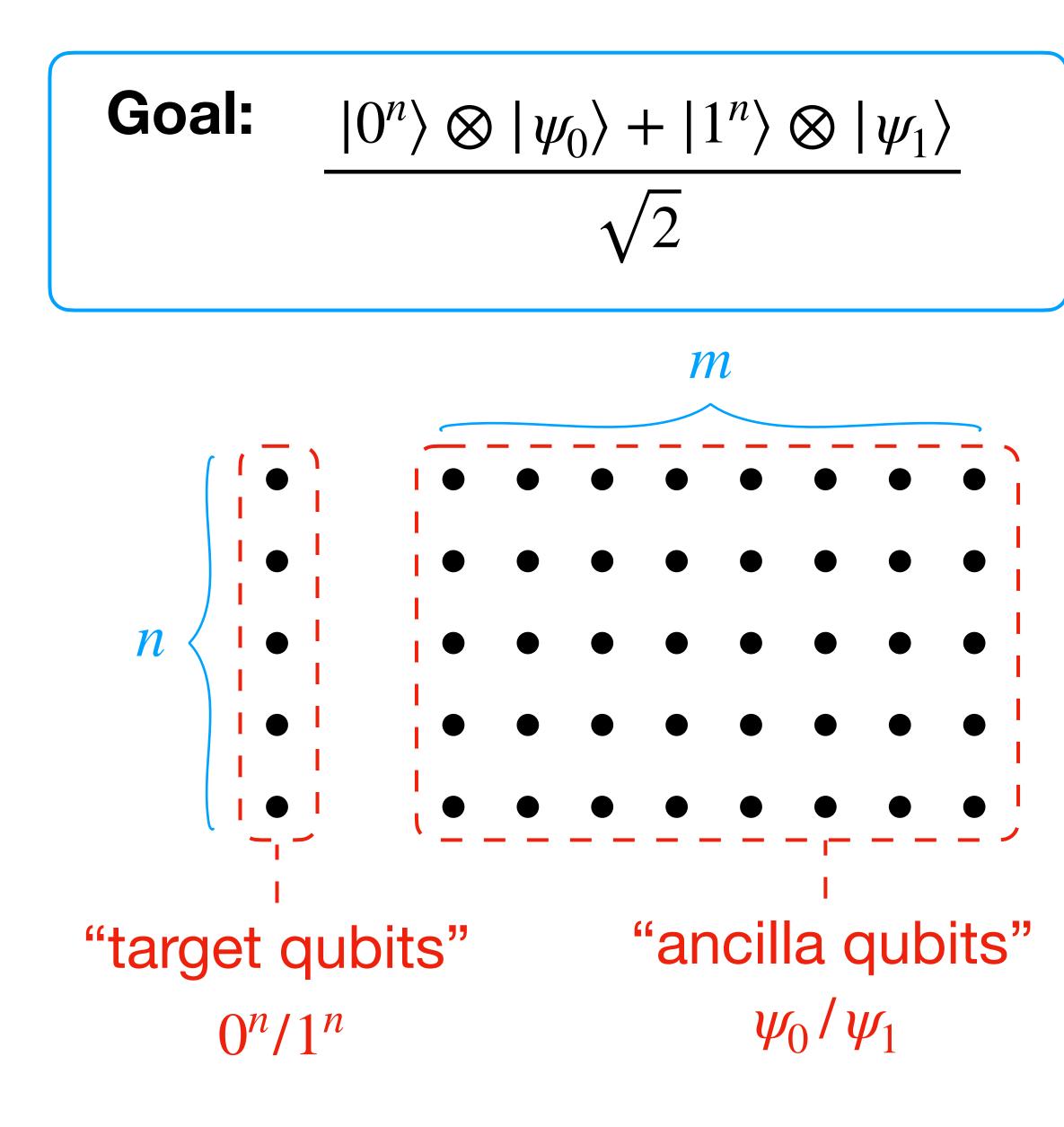
Corollary: If you can approximately construct a nekomata, then you can approximate Parity

- **Theorem** [Moore 1999]: Suppose you can implement unitaries U and U^{\dagger} $U|0^n\rangle = \frac{|0^n\rangle + |1^n\rangle}{\sqrt{2}}$
- in constant depth. Then, using Quantum Or gates and U, U^{\dagger} gates you

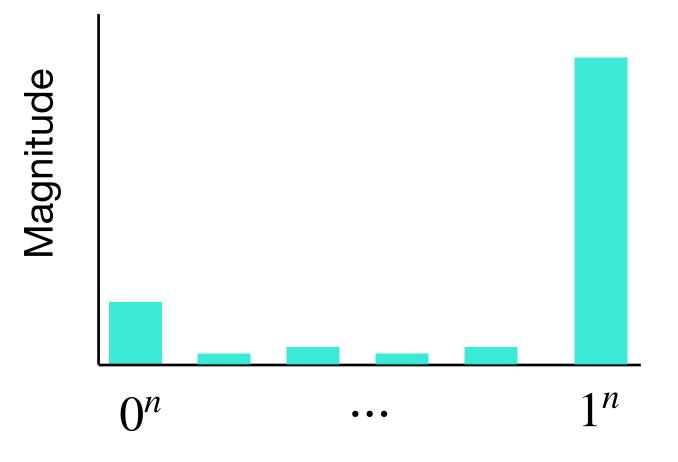
$$\frac{|0^n\rangle \otimes |\psi_0\rangle + |1^n\rangle \otimes |\psi_1\rangle}{\sqrt{2}}$$

"nekomata" [Rosenthal 2020]



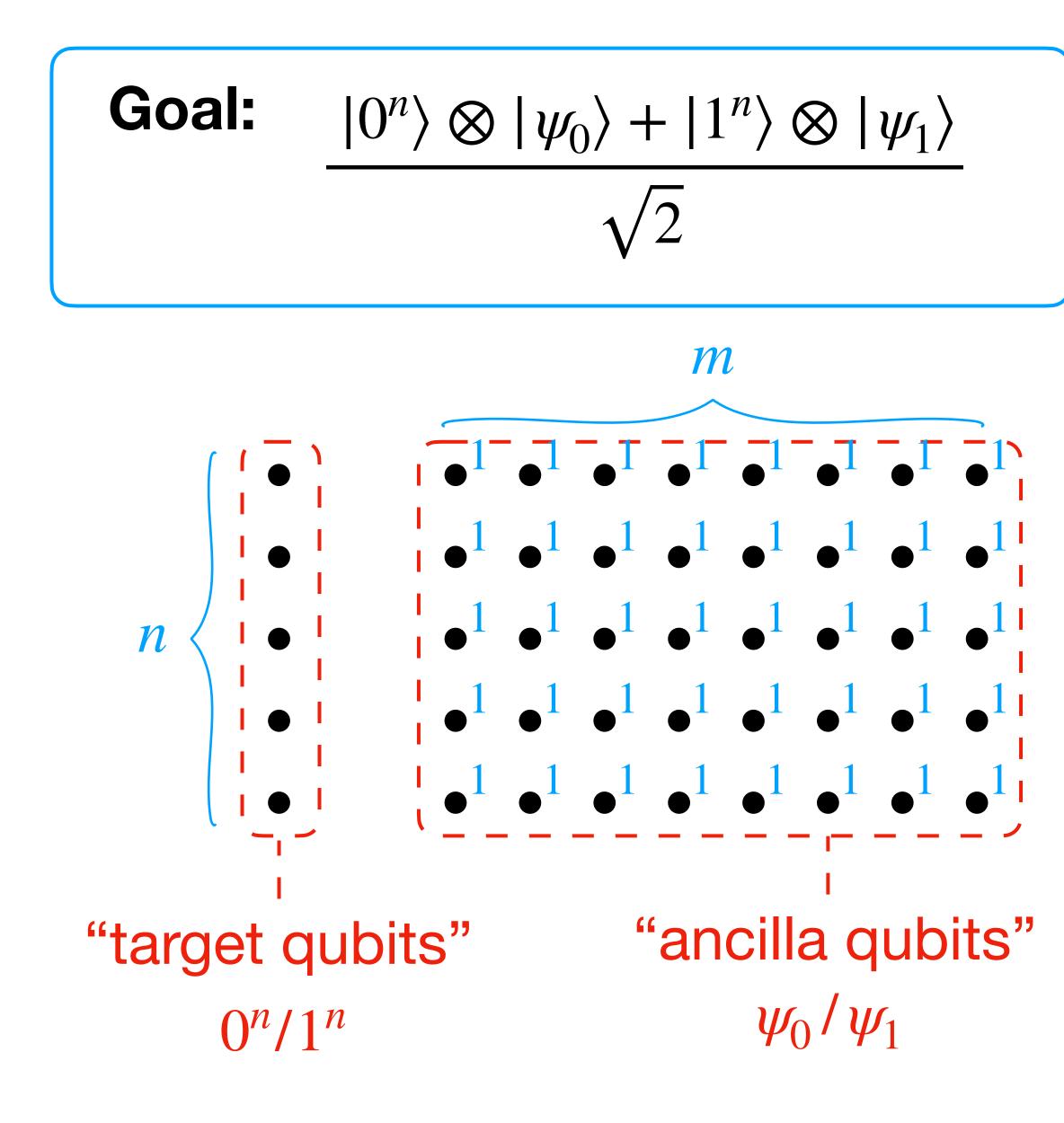


For each ancilla column, construct state with most mass on $|0^n\rangle$ and $|1^n\rangle$.

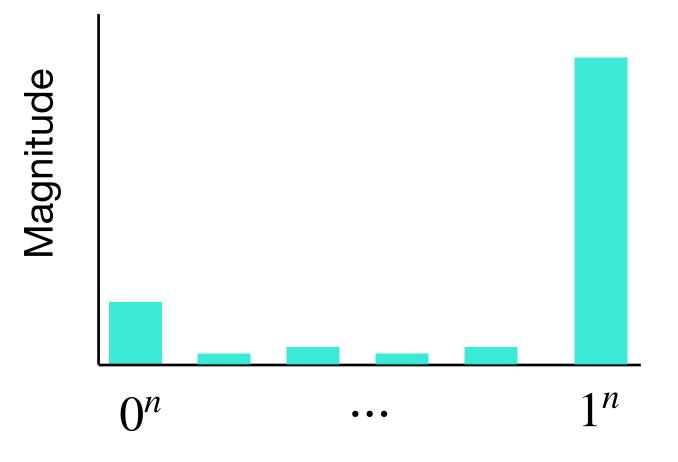


ii. Set *m* so that measuring all ones in the ancillas with probability 1/2.

 \implies some column is zeros $\approx 1/2$

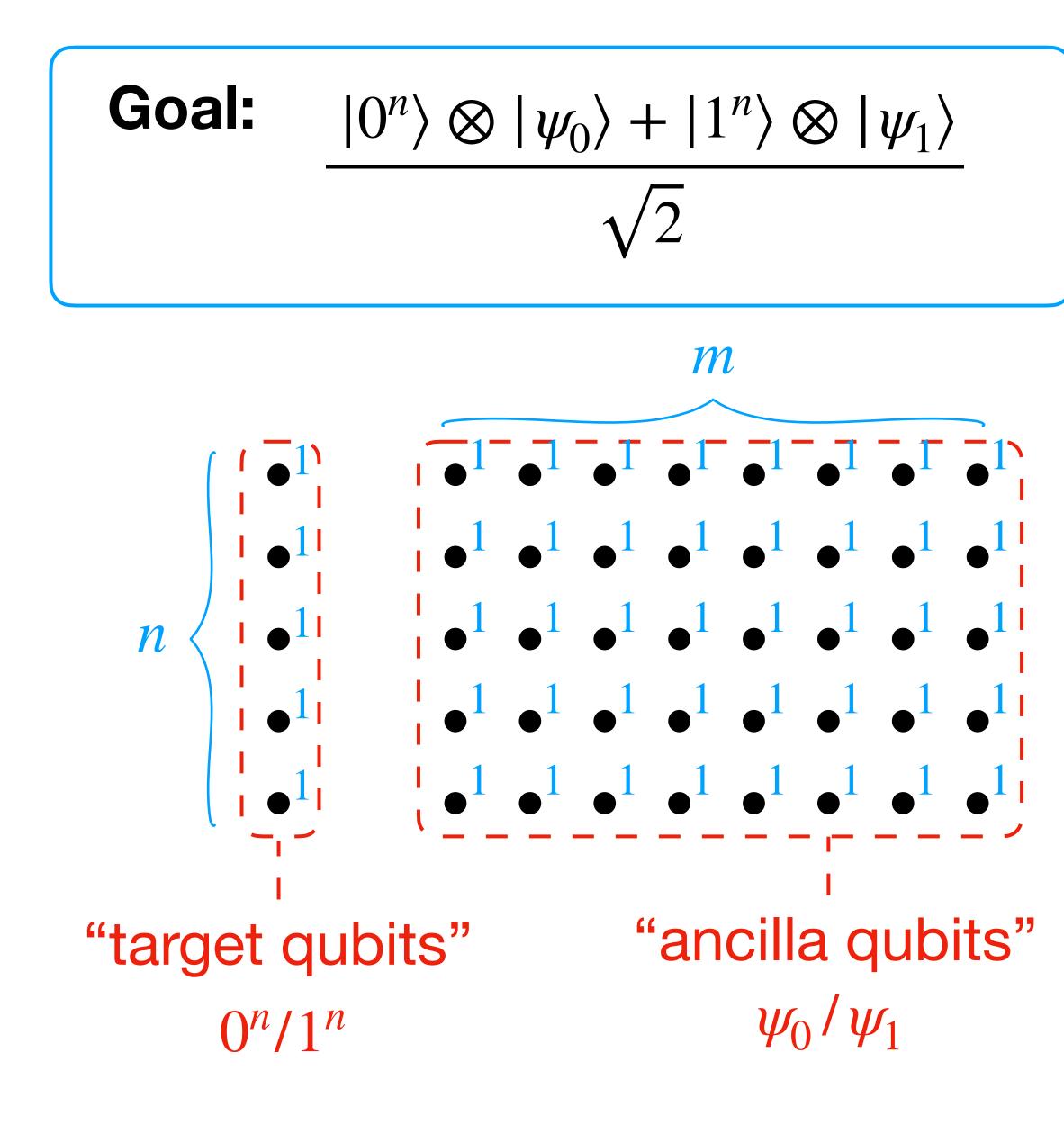


i. For each ancilla column, construct state with most mass on $|0^n\rangle$ and $|1^n\rangle$.

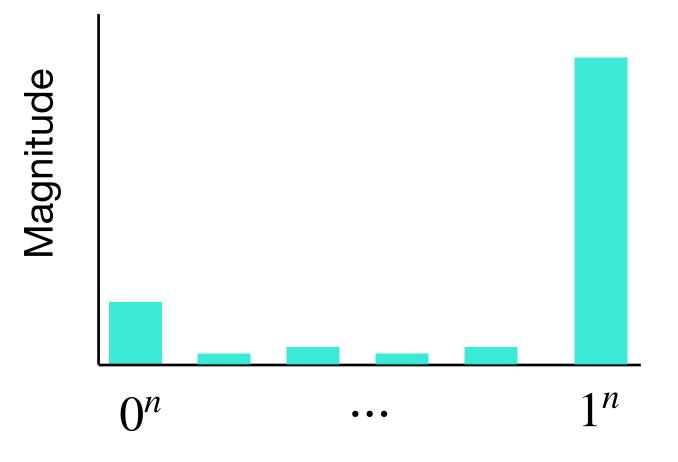


ii. Set *m* so that measuring all ones in the ancillas with probability 1/2.

 \implies some column is zeros $\approx 1/2$

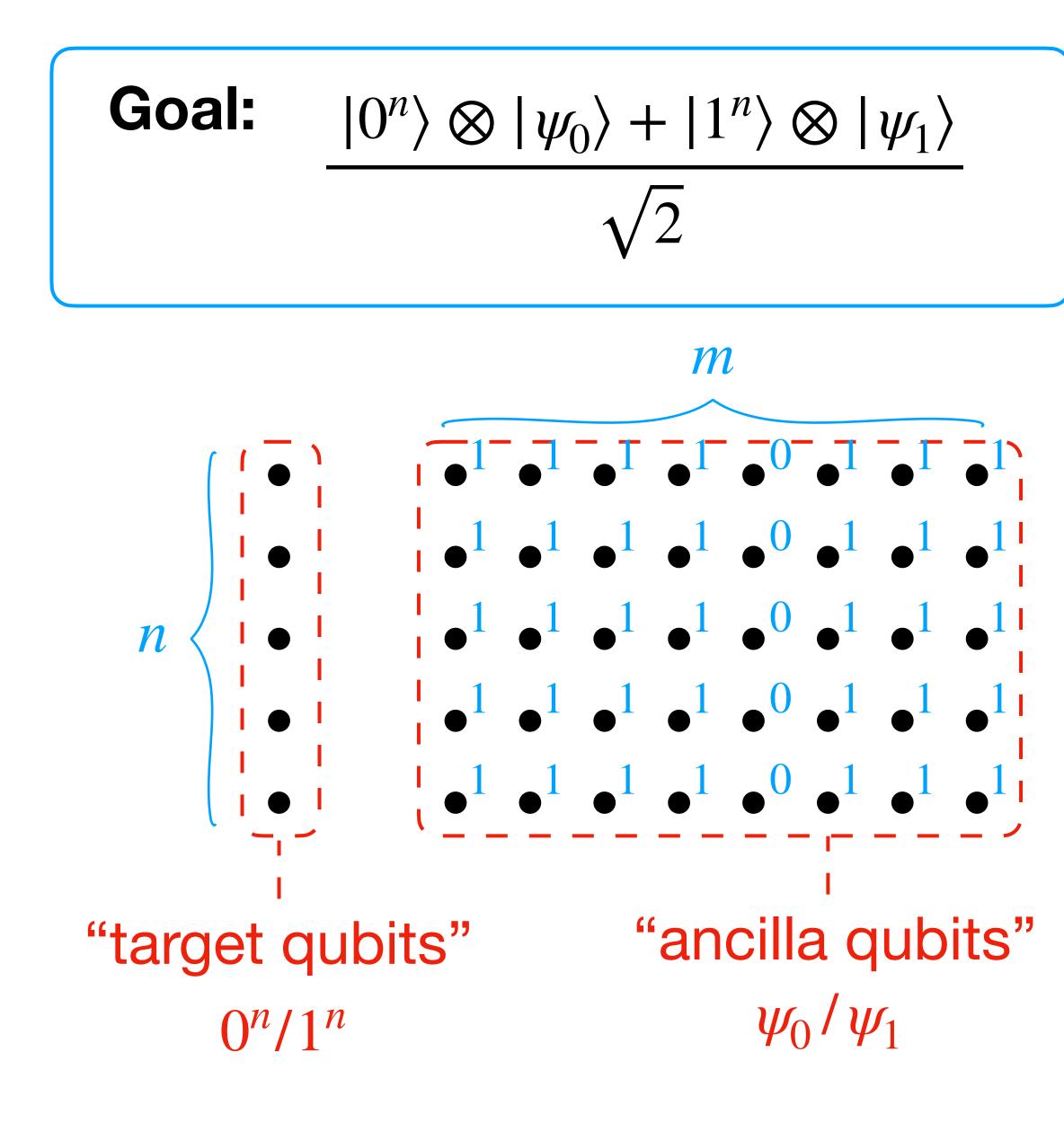


i. For each ancilla column, construct state with most mass on $|0^n\rangle$ and $|1^n\rangle$.

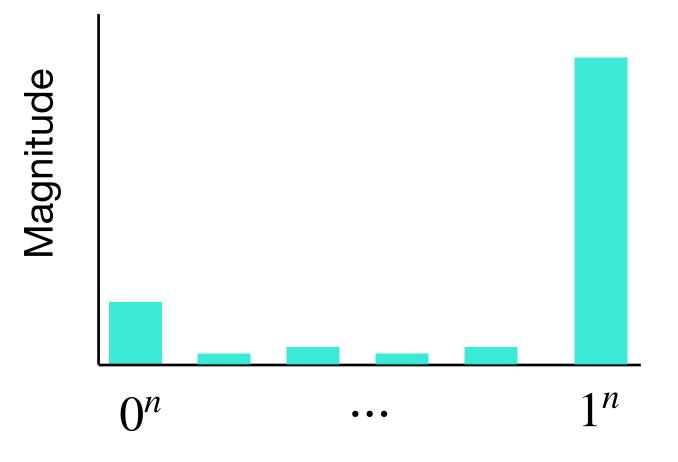


ii. Set *m* so that measuring all ones in the ancillas with probability 1/2.

 \implies some column is zeros $\approx 1/2$

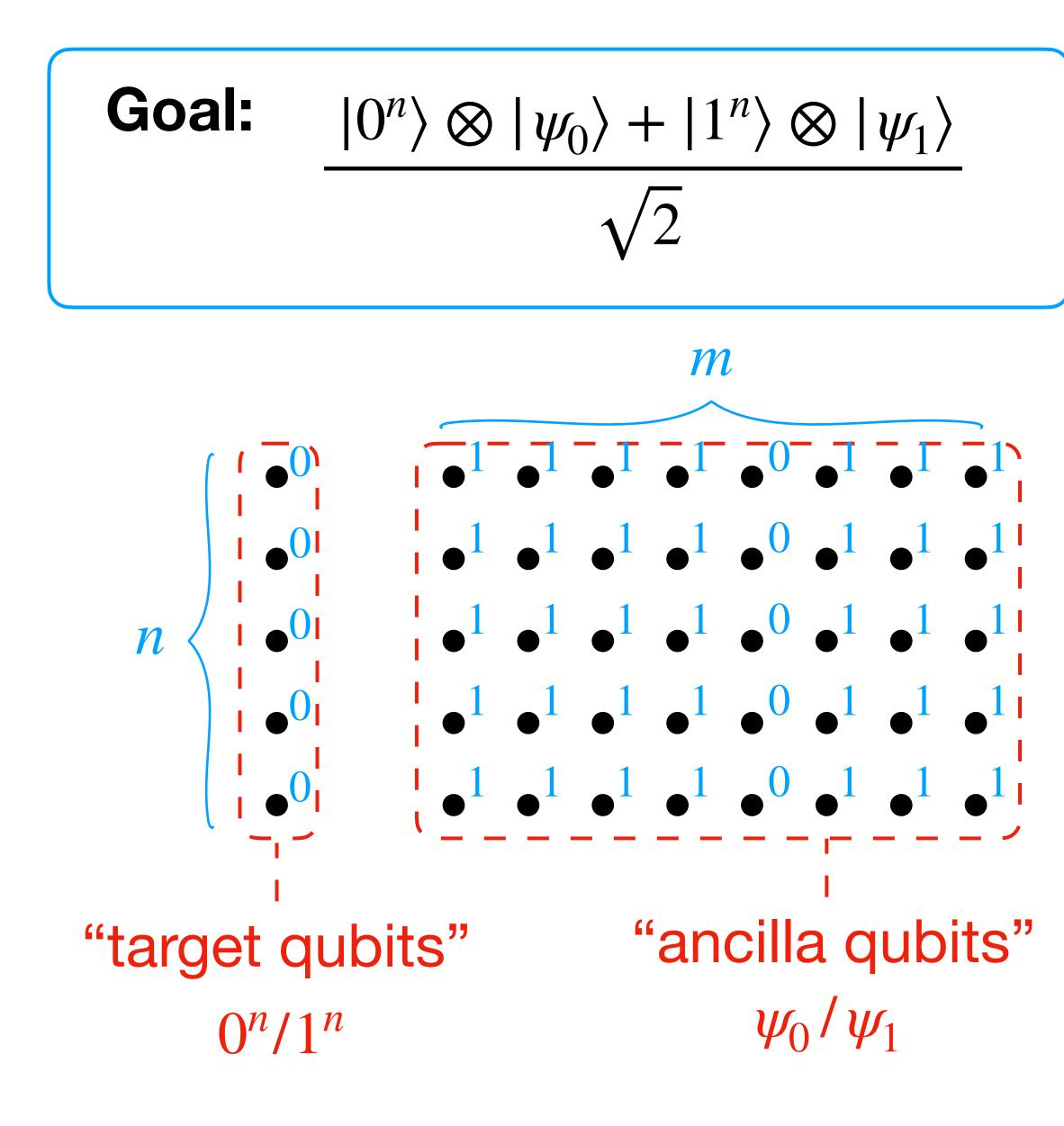


i. For each ancilla column, construct state with most mass on $|0^n\rangle$ and $|1^n\rangle$.

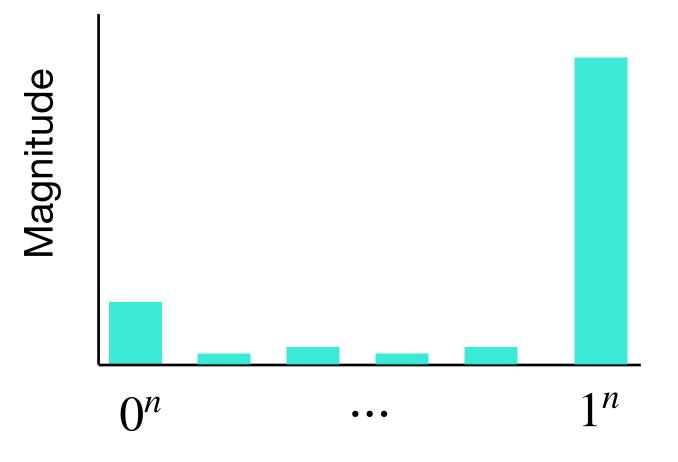


ii. Set *m* so that measuring all ones in the ancillas with probability 1/2.

 \implies some column is zeros $\approx 1/2$



i. For each ancilla column, construct state with most mass on $|0^n\rangle$ and $|1^n\rangle$.



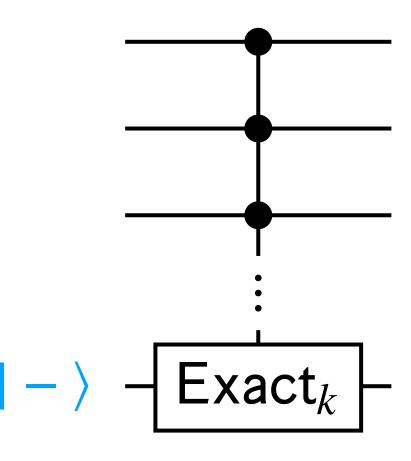
ii. Set *m* so that measuring all ones in the ancillas with probability 1/2.

 \implies some column is zeros $\approx 1/2$

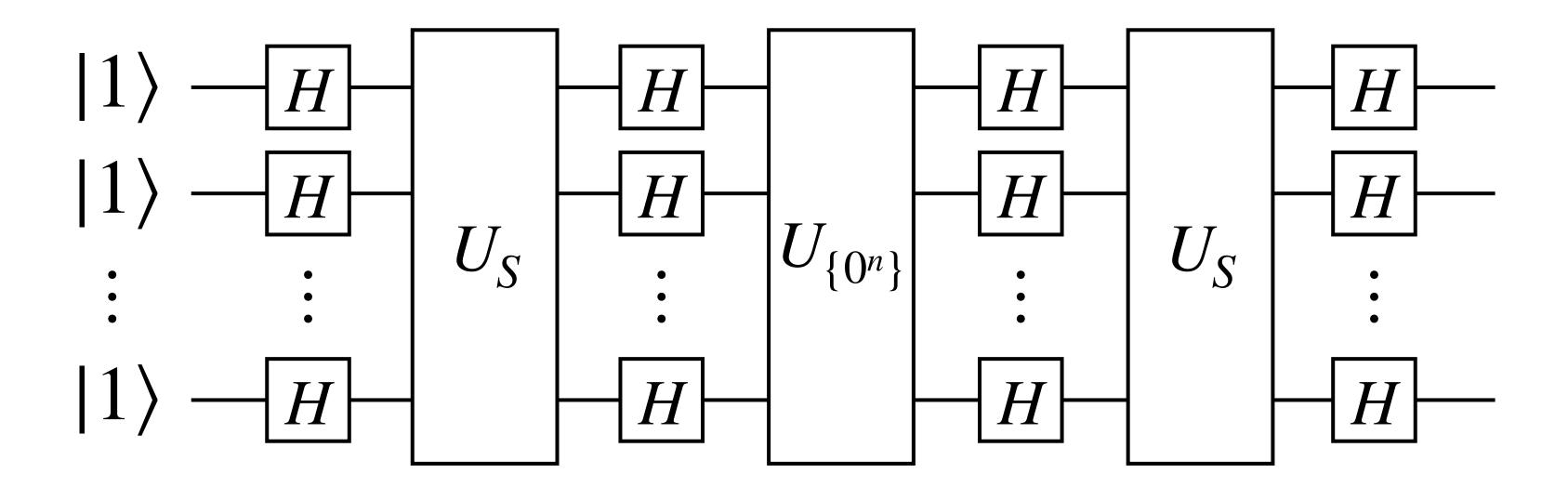
Ingredient 2i: Constructing weighted column

Parity-restricted gate: Let $S \subseteq \{0,1\}^n$ be strings with same parity $U_{\mathcal{S}}|x\rangle = (-1)^{x \in S}|x\rangle$

Recall: Threshold gates can be used to generate Exact gates Exact_k is a parity-restricted gate with $|S| = \binom{n}{k}$



Ingredient 2i: Constructing weighted column

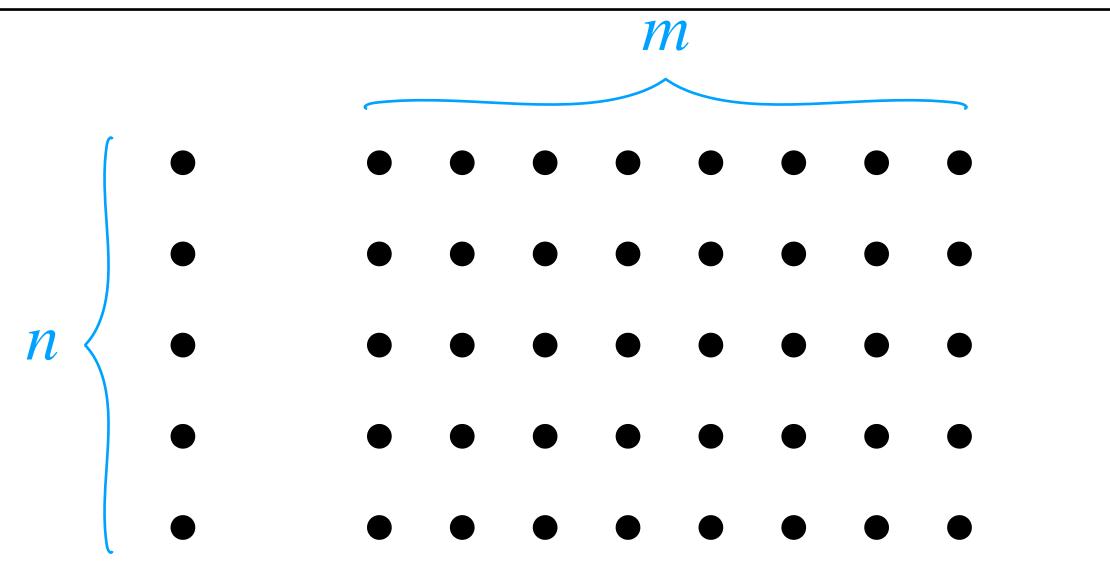


Don't read this:

Pr[measure $|0^n\rangle$]

 $\Pr[\text{measure } |1^n\rangle]$

$$] = 4\left(1 - \frac{|S|}{2^{n-1}}\right)^{2} \frac{|S|^{2}}{2^{2n-2}}$$
$$] = \left(1 - \frac{|S|^{2}}{2^{2n-3}}\right)^{2}$$



- For each ancilla column, construct this biased state
- ii. Set number of columns *m*
- iii. For each row, apply And from ancillas to target

Theorem: Exists
$$m \approx \frac{4^n}{|S|^2}$$

such that probability all columns are $|1|$
 $> \frac{1}{2} - \frac{|S|^2}{4^{n-1}}$
exists $|0^n\rangle$ column with probability
 $> \frac{1}{2} - \frac{|S|}{2^{n-2}}$
 \downarrow Consider Exact_{n/2} gate
 $|S| = {n \choose n/2} \approx \frac{2^n}{\sqrt{n\pi/2}}$

Putting everything together again

Theorem: There is a constant-depth quantum circuit constructed from $U_{\rm S}$ and And gates that approximates Parity with a number of gates

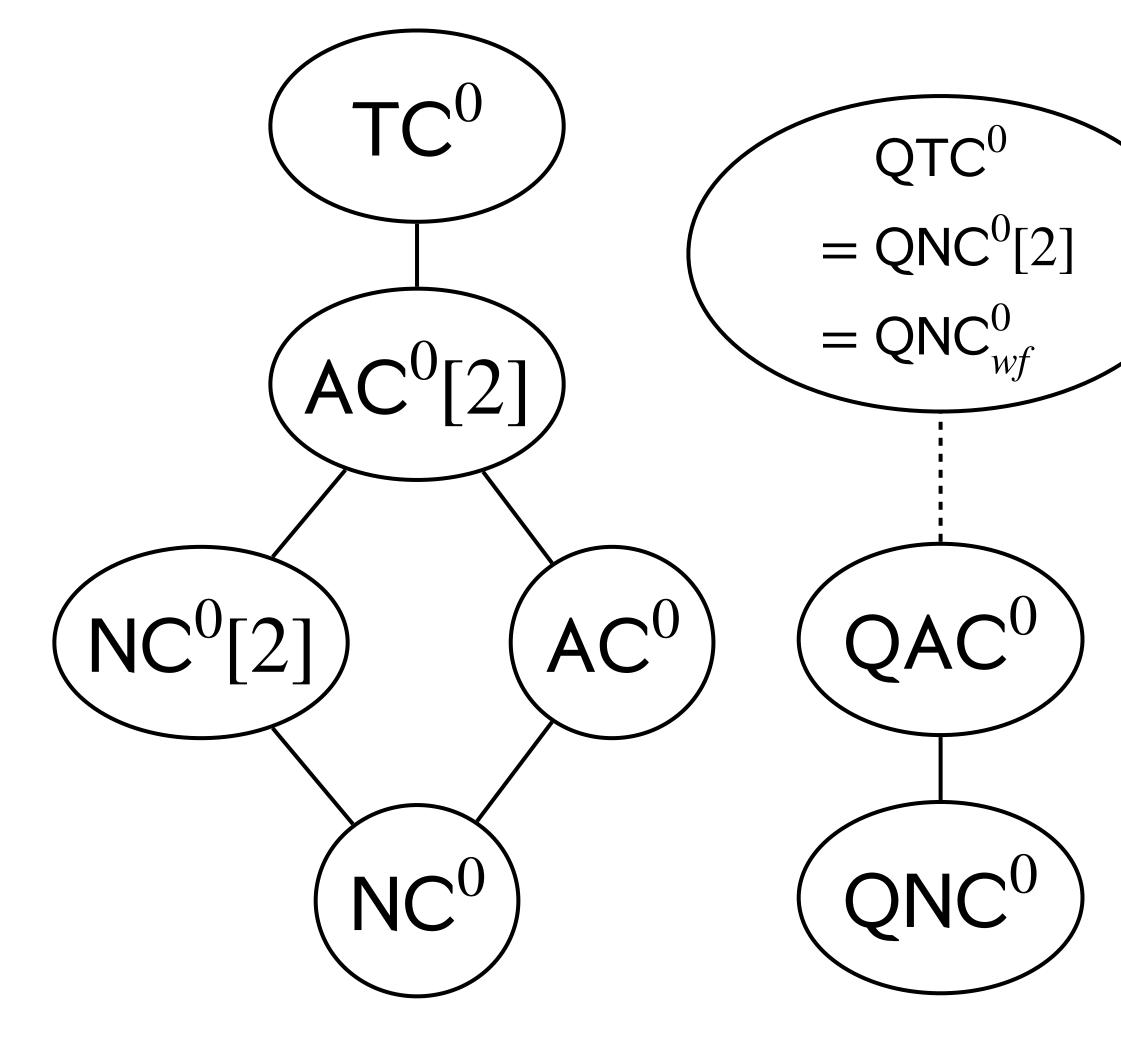
- And gate is a U_S gate with |S| = 1

poly
$$\left(n, \frac{4^n}{|S|^2}\right)$$

- → Poly-size threshold circuits for Parity \implies QNC⁰_{wf} \subseteq QTC⁰
 - \implies Exponential size QAC⁰ for Parity [Rosenthal 20]

Open questions

- Is there an exact quantum circuit for Parity using Majority?
- Are the And gates necessary in our Parity construction?
- Does $QAC^0 = QAC^0[2]$?
- Is there a complete characterization of the power of Boolean gates in constant depth?



Classical

Quantum

