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Large quantum gates

2

Question: What is the power of large multi-qubit gates?

Setting: Circuits with arbitrary 1- and 2-qubit gates and some 
restricted set of multi-qubit gates 

H

1- and 2-qubit gates multi-qubit gate

2

⋮ ≅ ⋮

⋮



Large gates might be experimentally feasible
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Rydberg atoms: 
• Efficient multiparticle entanglement via asymmetric 

Rydberg blockade [Saffman, Mølmer 2009] 

• Parallel implementation of high-fidelity multiqubit 
gates with neutral atoms [Levine et al. 2019]

⋮

Ion Traps: 
• Quantum computations with cold trapped ions 

[Cirac, Zoller 1995]

• Multi-particle entanglement of hot trapped ions 
[Mølmer, Sørensen 1999]

⋮



Large gates often have efficient small-gate decompositions
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Question: What is the power of large multi-qubit gates?

Observation: Large entangling gates can be efficiently 
decomposed into circuits of 1- and 2-qubit gates

2

⋮ ≅
n

Gates: 

Depth: 

n
n

≅⋮

⋮

⋮

⋮

⋮ ⋮ ⋮

Gates: 

Depth: 

O(n)
O(log(n))



Large gates in constant depth
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Question: What is the power of large multi-qubit gates in constant depth?

Experiments: Possibility for less decoherence

Large gate fidelity might be better than the fidelity of 
the circuit composed of smaller gates

Quantum Advantage:
Constant-depth quantum circuits can solve problems that 
constant-depth classical circuits cannot [Bravyi, Gosset, König 17]

Exact sampling is hard unless polynomial hierarchy collapses 
[Terhal, DiVincenzo 02]

Deep knowledge in classical setting



Quantum vs. classical circuits in constant depth
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Question: What results hold for classical circuits but not quantum ones?

Correspondence between classical and quantum gate classes:

Classical circuit classes 
1- and 2-input gates

f

x1

x2

xn

f(x) ∈ {0,1}x3

⟺

Quantum circuit classes 
1- and 2-qubit gates

⋮

|x1⟩
|x2⟩
|x3⟩

|b⟩

|x1⟩
|x2⟩
|x3⟩

|b ⊕ f(x)⟩f



Quantum vs. classical circuits in constant depth
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Question: What results hold for classical circuits but not quantum ones?

Correspondence between classical and quantum gate classes:

n

∑
i=1

xi (mod 2)

Classical circuit classes 
1- and 2-input gates

𝖯𝖺𝗋𝗂𝗍𝗒

x1

x2

xn

x3

⟺

2
⋮

|x1⟩
|x2⟩
|x3⟩

|b⟩

|x1⟩
|x2⟩
|x3⟩

|b ⊕ (
n

∑
i=1

xi (mod 2))⟩

Quantum circuit classes 
1- and 2-qubit gates*



Constant depth classical circuits can’t compute parity
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Question: Let  and  be classical circuit complexity classes.𝒞1 𝒞2

𝒞1 ⊊ 𝒞2 ⟹ 𝖰-𝒞1 ⊊ 𝖰-𝒞2
?

Example: 𝖭𝖢0 ⊊ 𝖭𝖢0[2]

bounded 
fan-in 

𝖭𝖢
No large gates
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Constant depth classical circuits can’t compute parity
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Question: Let  and  be classical circuit complexity classes.𝒞1 𝒞2

𝒞1 ⊊ 𝒞2 ⟹ 𝖰-𝒞1 ⊊ 𝖰-𝒞2
?

Example: 𝖭𝖢0 ⊊ 𝖭𝖢0[2] constant depth

bounded 
fan-in 

𝖭𝖢
No large gates

0

Constant depth

[2]
Large

parity

gates

𝖯𝖠𝖱𝖨𝖳𝖸



Lightcone of output bit is constant size
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Question: Let  and  be classical circuit complexity classes.𝒞1 𝒞2

𝒞1 ⊊ 𝒞2 ⟹ 𝖰-𝒞1 ⊊ 𝖰-𝒞2
?

Example: 𝖭𝖢0 ⊊ 𝖭𝖢0[2]

2d

d = O(1)

x1

x2

xn

n

∑
i=1

xi (mod 2)
x3

𝖯𝖠𝖱𝖨𝖳𝖸x4



Quantum circuits are also constrained by lightcones
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Question: Let  and  be classical circuit complexity classes.𝒞1 𝒞2

𝒞1 ⊊ 𝒞2 ⟹ 𝖰-𝒞1 ⊊ 𝖰-𝒞2
?

Example: 𝖰𝖭𝖢0 ⊊ 𝖰𝖭𝖢0[2]

2d

d = O(1)

S

Rx(θ)

2
⋮

|x1⟩
|x2⟩
|x3⟩

|b⟩

|x1⟩
|x2⟩
|x3⟩

|b ⊕ (
n

∑
i=1

xi (mod 2))⟩

Ry(δ)

Rz(ϕ)

H



AND gates cannot simulate Parity gates
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Question: Let  and  be classical circuit complexity classes.𝒞1 𝒞2

𝒞1 ⊊ 𝒞2 ⟹ 𝖰-𝒞1 ⊊ 𝖰-𝒞2
?

Example: 𝖠𝖢0 ⊊ 𝖠𝖢0[2]

un
bo

un
de

d 
fa

n-
in

 𝖠𝖢
Large  gates𝖠𝗇𝖽

[Ajtai / Furst, Saxe, Sipser 83]
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1

0

1

x1

x3

xn



Quantum And vs Quantum Parity
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𝖰𝖠𝖢0

𝖰𝖠𝖢0 vs. 𝖰𝖠𝖢0[2]

𝖰𝖠𝖢0

𝖰𝖠𝖢0

𝖰𝖠𝖢0

𝖰𝖠𝖢0

Quantum Lower 
Bounds for Fanout 
[Fang, et al. 2003]


Depth-2 QAC circuits 
cannot simulate 
quantum parity 

[Padé, et al. 2020]


A lower bound 
method for quantum 

circuits 
 [Bera 2011]


Bounds on the QAC 
Complexity of 

Approximating Parity 
[Rosenthal 2020]


On the Pauli 
 Spectrum of QAC 

 [Nadimpalli et al. 
2023]




Outline
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‣ Barrier to separations

‣ The surprising relevance of Fanout and Parity

‣ Quantum Majority is powerful

‣ Maybe we should look for other powerful gates…

‣ Quantum constant-depth circuits are powerful



Correspondence between classical and quantum gate classes
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*Classical circuit classes 
1- and 2-input gates

Quantum circuit classes 
1- and 2-qubit gates

f

x1

x2

xn

f(x) ∈ {0,1}x3
⋮

|x1⟩
|x2⟩
|x3⟩

|b⟩

|x1⟩
|x2⟩
|x3⟩

|b ⊕ f(x)⟩

⟺

f

Fanout: Classical gate 
classes allowed to copy 
gate outputs

x1
x2

x1 ∧ x2

x1 ∧ x2



Quantum Fanout
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⋮

𝖥𝖺𝗇𝗈𝗎𝗍 |b, x1, x2, …, xn⟩ = |b, x1 ⊕ b, …, xn ⊕ b⟩

⋮

⋮

≅



Quantum Fanout is scary
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Theorem [Moore 1999]: 𝖰𝖭𝖢0[2] = 𝖰𝖭𝖢0
wf

Constant-depth quantum circuits with Fanout can compute Parity 

(H⊗n) ⋅ 𝖥𝖺𝗇𝗈𝗎𝗍 ⋅ (H⊗n) = 𝖯𝖺𝗋𝗂𝗍𝗒

Recall: 𝖠𝖢0 ⊊ 𝖠𝖢[2]

Classical fanout does not imply Parity



Quantum Fanout implies Quantum Parity
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⋮ ≅

H
H
H

H
H

H
H
H

H
H

⋮

⋮

H
H
H

H
H

H
H
H

H
H

⋮

⋮

≅

H

HH

H
≅Theorem [Moore 1999]: 

𝖰𝖭𝖢0[2] = 𝖰𝖭𝖢0
wf

Parity!



Let’s try another separation…
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Question: Let  and  be classical circuit complexity classes.𝒞1 𝒞2

𝒞1 ⊊ 𝒞2 ⟹ 𝖰-𝒞1 ⊊ 𝖰-𝒞2
?

Example: 𝖠𝖢0[2] ⊊ 𝖳𝖢0

𝖳𝖢
Large Threshold gates

[Razborov, Smolensky 87]

un
bo

un
de

d 
fa

n-
in

 

𝖬
𝖺𝗃𝗈𝗋𝗂𝗍𝗒
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Question: Let  and  be classical circuit complexity classes.𝒞1 𝒞2

𝒞1 ⊊ 𝒞2 ⟹ 𝖰-𝒞1 ⊊ 𝖰-𝒞2
?

Example: 𝖠𝖢0[2] ⊊ 𝖳𝖢0

𝖳𝖢
Large Threshold gates

0

Constant depth

[Razborov, Smolensky 87]
constant depth

un
bo

un
de

d 
fa

n-
in

 

𝖬
𝖺𝗃𝗈𝗋𝗂𝗍𝗒



Fanout is powerful…
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Question: Let  and  be classical circuit complexity classes.𝒞1 𝒞2

𝒞1 ⊊ 𝒞2 ⟹ 𝖰-𝒞1 ⊊ 𝖰-𝒞2
?

Example:  ?𝖰𝖠𝖢0[2] ⊊ 𝖰𝖳𝖢0

Theorem [Høyer, Špalek 02]: 𝖰𝖳𝖢0 ⊆ 𝖰𝖭𝖢0[2] = 𝖰𝖠𝖢0[2]

Constant-depth quantum circuits with Fanout can compute Threshold



Low-depth complexity classes recap
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Classical Quantum
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𝖠𝖢0[2]

𝖭𝖢0

𝖠𝖢0𝖭𝖢0[2]

𝖳𝖢0 𝖰𝖭𝖢0[2] = 𝖰𝖭𝖢0
wf

𝖰𝖭𝖢0

𝖰𝖠𝖢0

𝖰𝖳𝖢0

Classical Quantum



Quantum Majority is powerful
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Theorem [G, Morris]:  𝖰𝖭𝖢𝟢[𝟤] ⊆ 𝖰𝖳𝖢𝟢

Constant-depth quantum circuits with Majority can compute Parity

Caveat: construction is approximate (inverse-poly precision)
‣ [Høyer, Špalek 2002] construction also approximate
‣ Made exact by [Takahashi, Tani 2011]

Anti-Caveat: construction applies to a generalization of Majority
‣ Seem useless in the classical setting, but computes Parity 

in the quantum setting



Classical Threshold gates can compute Parity

23

Question:  Why isn’t this result trivial?

𝖠𝖢0[2]

𝖭𝖢0

𝖠𝖢0𝖭𝖢0[2]

𝖳𝖢0

Classical

Classical Threshold gates 
can compute Parity 



Classical Threshold gates can compute Parity
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𝖤𝗑𝖺𝖼𝗍1

𝖤𝗑𝖺𝖼𝗍3

𝖤𝗑𝖺𝖼𝗍n

x ∈ {0,1}n
𝖮𝗋
=

𝖳𝗁𝗋𝖾𝗌𝗁𝗈𝗅𝖽1
𝖯𝖺𝗋𝗂𝗍𝗒(x)

Fanout!

Idea:  𝖤𝗑𝖺𝖼𝗍k(x) = 𝖳𝗁𝗋𝖾𝗌𝗁𝗈𝗅𝖽k(x) ∧ 𝖳𝗁𝗋𝖾𝗌𝗁𝗈𝗅𝖽k+1(x)



Quantum Majority implies Parity — Proof Outline
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Theorem [G, Morris]:  𝖰𝖭𝖢𝟢[𝟤] ⊆ 𝖰𝖳𝖢𝟢

Constant-depth quantum circuits with Majority can compute Parity

1) Cat state generation implies Fanout

2) Give a construction for a Cat state

Proof Outline: (following [Rosenthal 20])



Ingredient 1:  Cat state creation implies Parity
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Theorem [Moore 1999]:  Suppose you can implement unitaries  and 
such that


in constant depth. Then, using Quantum  gates and  gates you 
can implement Parity in constant depth.

U U†

𝖮𝗋 U, U†

U |0n⟩ = |0n⟩ + |1n⟩
2



Ingredient 1:  Cat state creation implies Parity
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U U†

|x⟩

|0n⟩

|b⟩ 𝖮𝗋

|x,0n, b⟩ + |x,1n, b⟩
2

|x,0n, b⟩+(−1)|x| |x,1n, b⟩
2

{ |x,0n, b⟩ if  |x | ≡ 0 (mod 2)
|x, ϕ, b⟩ if  |x | ≡ 1 (mod 2)



Ingredient 1:  Cat state creation implies Parity
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Theorem [Moore 1999]:  Suppose you can implement unitaries  and 
such that


in constant depth. Then, using Quantum Or gates and  gates you 
can implement Parity in constant depth.

U U†

U, U†

U |0n⟩ = |0n⟩ + |1n⟩
2

U |0n⟩ = |0n⟩ ⊗ |ψ0⟩ + |1n⟩ ⊗ |ψ1⟩
2

Also works when

Corollary: If you can approximately construct a 
nekomata, then you can approximate Parity

“nekomata”
[Rosenthal 2020]



Ingredient 2:  Construct approximate nekomata

29

Goal: |0n⟩ ⊗ |ψ0⟩ + |1n⟩ ⊗ |ψ1⟩
2

n

m

“target qubits”
0n/1n

“ancilla qubits”
ψ0 / ψ1

i. For each ancilla column, construct 
state with most mass on  and .|0n⟩ |1n⟩

M
ag

ni
tu

de

0n ⋯ 1n

ii. Set  so that measuring all ones in the 
ancillas with probability .

m
1/2

iii. For each row, apply  gate from 
ancillas to target

𝖠𝗇𝖽
 some column is zeros ⟹ ≈ 1/2
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Ingredient 2i:  Constructing weighted column
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Parity-restricted gate:  Let  be strings with same parity
S ⊆ {0,1}n

US |x⟩ = (−1)x∈S |x⟩

Recall: Threshold gates can be used to generate Exact gates

 is a parity-restricted gate with 𝖤𝗑𝖺𝖼𝗍k |S | = (n
k)

⋮
| − ⟩ 𝖤𝗑𝖺𝖼𝗍k



Ingredient 2i:  Constructing weighted column
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US

|1⟩ H
H

H

H
H

H

U{0n}

H
H

H

US

H
H

H

|1⟩

|1⟩

Don’t read this:
Pr[measure  |0n⟩] = 4 (1 − |S |

2n−1 )
2 |S |2

22n−2

Pr[measure  |1n⟩] = (1 − |S |2

22n−3 )
2



Ingredient 2:  Construct approximate nekomata
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n

m

i. For each ancilla column, 
construct this biased state

ii. Set number of columns m

Theorem:  Exists 

 


such that probability all columns are 

 


 


exists  column with probability


m ≈ 4n

|S |2

|1n⟩

> 1
2 − |S |2

4n−1

|0n⟩
> 1

2 − |S |
2n−2

Consider  gateExactn/2

|S | = ( n
n/2) ≈ 2n

nπ/2

iii. For each row, apply And from 
ancillas to target



Putting everything together again
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Theorem:  There is a constant-depth quantum circuit constructed from 
 and  gates that approximates Parity with a number of gates 
US 𝖠𝗇𝖽

𝗉𝗈𝗅𝗒 (n, 4n

|S |2 )
Poly-size threshold circuits for Parity ⟹ 𝖰𝖭𝖢0

wf ⊆ 𝖰𝖳𝖢0

 gate is a  gate with 𝖠𝗇𝖽 US |S | = 1
 Exponential size  for Parity [Rosenthal 20]⟹ 𝖰𝖠𝖢0



Open questions
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‣ Is there an exact quantum 
circuit for Parity using 
Majority?

𝖠𝖢0[2]

𝖭𝖢0

𝖠𝖢0𝖭𝖢0[2]

𝖳𝖢0
𝖰𝖳𝖢0

= 𝖰𝖭𝖢0[2]
= 𝖰𝖭𝖢0

wf

𝖰𝖭𝖢0

𝖰𝖠𝖢0

Classical Quantum

‣ Does ?𝖰𝖠𝖢0 = 𝖰𝖠𝖢𝟢[𝟤]

‣ Are the  gates 
necessary in our Parity 
construction?

𝖠𝗇𝖽

‣ Is there a complete 
characterization of the 
power of Boolean gates in 
constant depth?


