Sample-optimal classical shadows for pure states

Daniel Grier
UC San Diego

Hakop Pashayan Freie Universität Berlin Luke Schaeffer University of Maryland

Question: How many copies of ρ needed to succeed w.h.p for any $H \in \mathcal{H}$?

Variants of classical shadows - Local Clifford

Question: How many copies of ρ needed to succeed w.h.p for any $H \in \mathcal{H}$?

Variant 1 (Local Clifford): Measure each qubit of ρ in a random Pauli basis.

 \rightarrow [Huang, Kueng, Preskill 2020]: If $\mathcal{H} = \{k \text{-local Hamiltonians}\}$

Probability of success δ

Sample complexity:

$$O\left(\frac{4^k}{\epsilon^2}\log(\delta^{-1})\right)$$

Accuracy parameter ϵ :

$$|\hat{h} - \text{Tr}(H\rho)| \le \epsilon$$

Variants of classical shadows - Global Clifford

Question: How many copies of ρ needed to succeed w.h.p for any $H \in \mathcal{H}$?

Variant 2 (Global Clifford): Apply random Clifford unitary to ρ and measure in the computational basis.

$$\longrightarrow$$
 [Huang, Kueng, Preskill 2020]: $\|\mathcal{H}\|_F^2 = \max_{H \in \mathcal{H}} \|H\|_F^2 = \max_{H \in \mathcal{H}} \mathrm{Tr}(H^2)$

Sample complexity:
$$O\left(\frac{\|\mathcal{H}\|_F^2}{\epsilon^2}\log(\delta^{-1})\right)$$

Observation: If \mathcal{H} has observables with operator norm 1, then $||\mathcal{H}||_F^2 = d$.

Variants of classical shadows - Global Clifford

Question: How many copies of ρ needed to succeed w.h.p for any $H \in \mathcal{H}$?

Variant 2 (Global Clifford): Apply random Clifford unitary to ρ and measure in the computational basis.

IHuang, Kueng, Preskill 2020]:
$$\|\mathcal{H}\|_F^2 = \max_{H \in \mathcal{H}} \|H\|_F^2 = \max_{H \in \mathcal{H}} \mathrm{Tr}(H^2)$$

Sample complexity:
$$O\left(\frac{d}{\epsilon^2} \log(\delta^{-1})\right)$$
 Compare to tomography: $O(d^3/\epsilon^2)$

Observation: If \mathcal{H} has observables with operator norm 1, then $\|\mathcal{H}\|_F^2 = d$.

Variants of classical shadows - Joint measurement

Question: How many copies of ρ needed to succeed w.h.p for any $H \in \mathcal{H}$?

Variant 3 (Joint measurement): Get all copies of ρ at once (i.e., $\rho^{\otimes n}$) and can make an arbitrary measurement across all copies.

 \rightarrow [G, Pashayan, Schaeffer]: Assuming ρ is pure

Sample complexity:
$$O\left(\left(\frac{\|\mathscr{H}\|_F}{\epsilon} + \frac{1}{\epsilon^2}\right)\log(\delta^{-1})\right)$$
 $O\left(\frac{\|\mathscr{H}\|_F^2}{\epsilon^2}\log(\delta^{-1})\right)$

$$O\left(\frac{\|\mathcal{H}\|_F^2}{\epsilon^2}\log(\delta^{-1})\right)$$

Theorem: In constant δ regime, this is tight (up to a log factor).

Compression vs. classical shadows for pure states

Classical Shadows:

How many copies of $\psi \in \mathbb{C}^d$ do we need to *measure* to estimate the expected value of an unknown observable with high probability?

Compression: Given an *explicit* description of $\psi \in \mathbb{C}^d$ as a list of amplitudes, how many bits do we need to write down to estimate an unknown observable?

Theorem:

$$O\left(\left(\frac{\sqrt{d}}{\epsilon} + \frac{1}{\epsilon^2}\right)\log(\delta^{-1})\right)$$

sample are sufficient

Theorem [Gosset, Smolin 2018]:

$$\tilde{\Theta}\left(\left(\frac{\sqrt{d}}{\epsilon} + \frac{1}{\epsilon^2}\right)\log(\delta^{-1})\right)$$

bits are sufficient and necessary

Intuition: Measurements are giving the maximum possible information

Revisiting Variant 2 (Global Clifford) with pure states

Variant 2 (Independent measurement): Can only measure a single copy of ρ at once, but can apply arbitrary measurement.

Question: What happens when ρ is pure?

- Can still use Huang-Kueng-Preskill algorithm: $O(\|\mathcal{H}\|_F^2/\epsilon^2)$
- But their lower bound uses high rank states...

Sample complexity [G, Pashayan, Schaeffer]:

$$O\left(\frac{\sqrt{d}\|\mathcal{H}\|_F}{\epsilon} + \frac{1}{\epsilon^2}\right)$$

 \rightarrow If $\|\mathcal{H}\|_F = d^{1/6}$ and $\epsilon = d^{-2/3}$, this is better than HKP bound

Outline for rest of talk

Sample complexity [G, Pashayan, Schaeffer]:

$$O\left(\frac{\sqrt{d}\|\mathcal{H}\|_F}{\epsilon} + \frac{1}{\epsilon^2}\right)$$

Revisit the Huang-Kueng-Preskill algorithm

Define new estimator for the pure state case

Sketch analysis

Tensor networks

Representation theory

POVM that can be used for the Global Clifford analysis

HKP Global Clifford measurement: Apply random Clifford unitary to ρ and measure in the computational basis.

We use a continuous POVM instead

$$\left\{ d\mathbf{v}\mathbf{v}^{\dagger} \mathbf{d}\mu(\mathbf{v}) \right\}_{\mathbf{v} \in \mathbb{C}^d}$$

$$d \int \mathbf{v}\mathbf{v}^{\dagger} \mathbf{d}\mu(\mathbf{v}) = I$$
Haar measure

These measurements turn out to be equally good in the independent measurement setting

→ But not the joint measurement setting! $\propto \left\{ (\mathbf{v}\mathbf{v}^{\dagger})^{\otimes n} \, \mathrm{d}\mu(\mathbf{v}) \right\}_{\mathbf{v} \in \mathbb{C}^d}$

Overview Huang-Kueng-Preskill algorithm

- 1) Choose measurement operators $\{d\mathbf{v}\mathbf{v}^{\dagger}d\mu(\mathbf{v})\}_{\mathbf{v}\in\mathbb{C}^d}$
- 2) From measurement result, estimate state $\hat{\rho} = (d+1)vv^{\dagger} I$
- 3) Compute expectation $\mathbb{E}[\hat{\rho}] = \rho \implies \mathbb{E}[\operatorname{Tr}(H\hat{\rho})] = \operatorname{Tr}(H\rho)$ 4) Compute variance $\operatorname{Var}[\operatorname{Tr}(H\hat{\rho})] \approx \|H\|_F^2$
 - - → Repeat *n* times and average $\hat{\rho}_{avg} = \frac{\hat{\rho}_1 + \hat{\rho}_2 + ... + \hat{\rho}_n}{n}$
 - Variance of average $Var[Tr(H\hat{\rho}_{avg})] \approx ||H||_F^2/n$
 - Chebyshev's inequality $\Pr[|\operatorname{Tr}(H\hat{\rho}_{\operatorname{avg}}) \operatorname{Tr}(H\rho)| \ge \epsilon] \le \frac{\|H\|_F^2}{n\epsilon^2}$

Overview of our proof strategy for pure states

- 1) Choose measurement operators $\left\{ d \mathbf{v} \mathbf{v}^{\dagger} d\mu(\mathbf{v}) \right\}_{\mathbf{v} \in \mathbb{C}^d}$
- 2) From measurement result, estimate state $\hat{\rho} = (d+1)vv^{\dagger} I$

Repeat
$$n$$
 times $\hat{\rho}_{\text{pairs}} = \frac{1}{n(n-1)} \sum_{i \neq j} \hat{\rho}_i \hat{\rho}_j$

- 3) Compute expectation
- $\mathbb{E}[\hat{\rho}_i \hat{\rho}_j] = \mathbb{E}[\hat{\rho}_i] \mathbb{E}[\hat{\rho}_j] = \rho \rho = \rho$

purity of ρ

4) Compute variance $Var[Tr(H\hat{\rho}_{pairs})] \approx d||H||_F^2/n^2 + 1/n$

Tensor Network Detour

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,d} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ A_{d,1} & A_{d,2} & \cdots & A_{d,d} \end{pmatrix} = \{A_{i,j}\}_{i,j \in [d]} \qquad \begin{array}{c} i \\ A \end{array} \qquad \begin{array}{c} k \\ B \end{array} \qquad = \begin{array}{c} i,k \\ A \otimes B \end{array}$$

$$B = \begin{pmatrix} B_{1,1} & B_{1,2} & \cdots & B_{1,d} \\ B_{2,1} & B_{2,2} & \cdots & B_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ B_{d,1} & B_{d,2} & \cdots & B_{d,d} \end{pmatrix} = \{B_{k,l}\}_{k,l \in [d]}$$

Tensor Product:

$$(A \otimes B)_{i,k,j,l} = A_{i,j}B_{k,l}$$

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,d} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ A_{d,1} & A_{d,2} & \cdots & A_{d,d} \end{pmatrix} = \{A_{i,j}\}_{i,j \in [d]}$$

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,d} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ A_{d,1} & A_{d,2} & \cdots & A_{d,d} \end{pmatrix}$$

$$\begin{bmatrix} i \\ A \end{bmatrix} \begin{bmatrix} k \\ B \end{bmatrix} = \begin{bmatrix} AB \\ l \end{bmatrix}$$

$$B = \begin{pmatrix} B_{1,1} & B_{1,2} & \cdots & B_{1,d} \\ B_{2,1} & B_{2,2} & \cdots & B_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ B_{d,1} & B_{d,2} & \cdots & B_{d,d} \end{pmatrix} = \{B_{k,l}\}_{k,l \in [d]}$$

Tensor Composition:

$$(AB)_{i,l} = \sum_{k} A_{i,k} B_{k,l}$$

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,d} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ A_{d,1} & A_{d,2} & \cdots & A_{d,d} \end{pmatrix} = \{A_{i,j}\}_{i,j \in [d]}$$

$$\begin{matrix} i \\ A \end{matrix} \qquad \begin{matrix} k \\ A \end{matrix}$$

$$\begin{matrix} A \end{matrix}$$

$$\frac{i}{A}$$
 $\frac{k}{B}$

$$B = \begin{pmatrix} B_{1,1} & B_{1,2} & \cdots & B_{1,d} \\ B_{2,1} & B_{2,2} & \cdots & B_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ B_{d,1} & B_{d,2} & \cdots & B_{d,d} \end{pmatrix} = \{B_{k,l}\}_{k,l \in [d]}$$

$$\begin{array}{c} \text{Self loops:} \\ B_{k,l} \sum_{i} A_{i,i} = \text{Tr}(A)B_{k,l} \\ \vdots & \vdots & \ddots & \vdots \\ B_{d,1} & B_{d,2} & \cdots & B_{d,d} \end{pmatrix}$$

$$B_{k,l} \sum_{i} A_{i,i} = \operatorname{Tr}(A)B_{k,l}$$

Review of strategy

Measurement operators

$$\left\{ d\mathbf{v}\mathbf{v}^{\dagger} d\mu(\mathbf{v}) \right\}_{\mathbf{v} \in \mathbb{C}^d}$$

Estimate of state

$$\hat{\rho} = (d+1)\mathbf{v}\mathbf{v}^{\dagger} - I$$

Goal: Show $\mathbb{E}[\hat{\rho}] = \rho$.

ightharpoonup V is random variable that is ${\bf v}{\bf v}^\dagger$ with probability $d{
m Tr}({\bf v}{\bf v}^\dagger
ho) \ {
m d}\mu({\bf v})$

$$\mathbf{E}[\hat{\rho}] = (d+1)\mathbb{E}[V] - I$$

$$\mathbb{E}[V] = d \int \mathbf{v} \mathbf{v}^{\dagger} \mathrm{Tr}(\mathbf{v} \mathbf{v}^{\dagger} \rho) \, \mathrm{d}\mu(\mathbf{v})$$

$$\mathbb{E}[V] = d \int \mathbf{v} \mathbf{v}^{\dagger} \mathrm{Tr}(\mathbf{v} \mathbf{v}^{\dagger} \rho) \, \mathrm{d}\mu(\mathbf{v})$$

Schur's Lemma: This quantity is proportional to the sum over all permutations across the indices

$$\mathbb{E}[V] = d \int \mathbf{v} \mathbf{v}^{\dagger} \mathrm{Tr}(\mathbf{v} \mathbf{v}^{\dagger} \rho) \, \mathrm{d}\mu(\mathbf{v})$$

SWAP term

Identity term

$$\mathbb{E}[V] = d \int \mathbf{v} \mathbf{v}^{\dagger} \mathrm{Tr}(\mathbf{v} \mathbf{v}^{\dagger} \rho) \, d\mu(\mathbf{v}) = d \frac{\rho + I}{d(d+1)} = \frac{\rho + I}{d+1} \quad \begin{array}{c} \mathbf{Estimator:} \\ \hat{\rho} = (d+1)V - I \end{array}$$

$$\hat{\rho} = (d+1)V - I$$

SWAP term

Identity term

Overview of our proof strategy for pure states

- 1) Choose measurement operators $\{d\mathbf{v}\mathbf{v}^{\dagger}\mathbf{d}\mu(\mathbf{v})\}_{\mathbf{v}\in\mathbb{C}^d}$
- From measurement result, estimate state $\hat{\rho} = (d + 1)vv^{\dagger} I$

Repeat *n* times
$$\hat{\rho}_{\text{pairs}} = \frac{1}{n(n-1)} \sum_{i \neq j} \hat{\rho}_i \hat{\rho}_j$$

Compute expectation
$$\mathbb{E}[\hat{\rho}_i\hat{\rho}_j] = \mathbb{E}[\hat{\rho}_i]\mathbb{E}[\hat{\rho}_j] = \rho\rho = \rho$$

Compute variance

$$Var[Tr(H\hat{\rho}_{pairs})] \approx d||H||_F^2/n^2 + 1/n$$

Computing the variance term by term

Estimator:

$$\hat{\rho}_{\text{pairs}} = \frac{1}{n(n-1)} \sum_{i \neq j} \hat{\rho}_i \hat{\rho}_j$$

$$\longrightarrow \text{Var}[\text{Tr}(H\hat{\rho}_{\text{pairs}})] = \frac{1}{n^2(n-1)^2} \sum_{i \neq j} \sum_{k \neq \ell} \text{Cov}(\text{Tr}(H\hat{\rho}_i\hat{\rho}_j), \text{Tr}(H\hat{\rho}_k\hat{\rho}_\ell))$$

Case Analysis:

$$\{i,j\} \cap \{k,\ell\} = \varnothing \implies \operatorname{Tr}(H\hat{\rho}_i\hat{\rho}_j) \text{ and } \operatorname{Tr}(H\hat{\rho}_k\hat{\rho}_\ell) \text{ are independent}$$

$$\implies \operatorname{Cov}(\operatorname{Tr}(H\hat{\rho}_i\hat{\rho}_j), \operatorname{Tr}(H\hat{\rho}_k\hat{\rho}_\ell)) = 0$$

Computing the variance term by term

Estimator:

$$\hat{\rho}_{\text{pairs}} = \frac{1}{n(n-1)} \sum_{i \neq j} \hat{\rho}_i \hat{\rho}_j$$

$$\longrightarrow \text{Var}[\text{Tr}(H\hat{\rho}_{\text{pairs}})] = \frac{1}{n^2(n-1)^2} \sum_{i \neq j} \sum_{k \neq \ell} \text{Cov}(\text{Tr}(H\hat{\rho}_i\hat{\rho}_j), \text{Tr}(H\hat{\rho}_k\hat{\rho}_\ell))$$

Case Analysis:

One index matches ($|\{i,j\} \cap \{k,\ell\}| = 1$): O(1)

Both indices match ($|\{i,j\} \cap \{k,\ell\}| = 2$): $O(d||H||_F^2)$

→ Var[Tr(
$$H\hat{\rho}_{pairs}$$
)] = $O(d||H||_F^2/n^2 + 1/n)$

Isolating large covariance term

Big covariance term: $Cov(Tr(H\hat{\rho}_i\hat{\rho}_j), Tr(H\hat{\rho}_i\hat{\rho}_j))$

$$= \mathbb{E}[\text{Tr}(H\hat{\rho}_i\hat{\rho}_j)\overline{\text{Tr}(H\hat{\rho}_i\hat{\rho}_j)}] - \mathbb{E}[\text{Tr}(H\hat{\rho}_i\hat{\rho}_j)]\mathbb{E}[\overline{\text{Tr}(H\hat{\rho}_i\hat{\rho}_j)}]$$

$$\leq \mathbb{E}[\text{Tr}(H\hat{\rho}_i\hat{\rho}_j)\overline{\text{Tr}(H\hat{\rho}_i\hat{\rho}_j)}]$$

$$= \mathbb{E}[\text{Tr}(H\hat{\rho}_i\hat{\rho}_i)\text{Tr}(H\hat{\rho}_i\hat{\rho}_i)]$$

Isolating large covariance term

Big covariance term: $Cov(Tr(H\hat{\rho}_i\hat{\rho}_j), Tr(H\hat{\rho}_i\hat{\rho}_j))$

$$= \mathbb{E}[\operatorname{Tr}(H\hat{\rho}_i\hat{\rho}_j)\overline{\operatorname{Tr}(H\hat{\rho}_i\hat{\rho}_j)}] - \mathbb{E}[\operatorname{Tr}(H\hat{\rho}_i\hat{\rho}_j)]\mathbb{E}[\overline{\operatorname{Tr}(H\hat{\rho}_i\hat{\rho}_j)}]$$

$$\leq \mathbb{E}[\text{Tr}(H\hat{\rho}_i\hat{\rho}_j)\overline{\text{Tr}(H\hat{\rho}_i\hat{\rho}_j)}]$$

$$= \mathbb{E}[\text{Tr}(H\hat{\rho}_i\hat{\rho}_i)\text{Tr}(H\hat{\rho}_i\hat{\rho}_i)]$$

Covariance is broken into two expectations

 $\mathbb{E}[\text{Tr}(H\hat{\rho}_i\hat{\rho}_j)\text{Tr}(H\hat{\rho}_j\hat{\rho}_i)]$

Covariance is broken into two expectations

 $\mathbb{E}[\mathrm{Tr}(H\hat{\rho}_i\hat{\rho}_j)\mathrm{Tr}(H\hat{\rho}_j\hat{\rho}_i)]$

Recall:
$$\hat{\rho} = (d+1)\mathbf{v}\mathbf{v}^{\dagger} - I$$

ightharpoonup V is random variable that is ${f vv}^\dagger$ with probability $d{
m Tr}({f vv}^\dagger
ho)~{
m d}\mu({f v})$

$$\blacksquare [\hat{\rho} \otimes \hat{\rho}] = (d+1)^2 \mathbb{E}[V^{\otimes 2}] - (d+1)(\mathbb{E}[V] \otimes I + I \otimes \mathbb{E}[V]) + I \otimes I$$

Recall:
$$\hat{\rho} = (d+1)\mathbf{v}\mathbf{v}^{\dagger} - I$$

ightharpoonup V is random variable that is ${f vv}^\dagger$ with probability $d{
m Tr}({f vv}^\dagger
ho)~{
m d}\mu({f v})$

$$\longrightarrow \mathbb{E}[\hat{\rho} \otimes \hat{\rho}] = (d+1)^2 \mathbb{E}[V^{\otimes 2}] - (d+1)(\mathbb{E}[V] \otimes I + I \otimes \mathbb{E}[V]) + I \otimes I$$

$$= (d+1)^2 \mathbb{E}[V^{\otimes 2}] - I \otimes I - \rho \otimes I - I \otimes \rho$$

Recall:
$$\hat{\rho} = (d+1)\mathbf{v}\mathbf{v}^{\dagger} - I$$

ightharpoonup V is random variable that is ${f vv}^\dagger$ with probability $d{
m Tr}({f vv}^\dagger
ho)~{
m d}\mu({f v})$

$$\mathbb{E}[\hat{\rho} \otimes \hat{\rho}] = (d+1)^2 \mathbb{E}[V^{\otimes 2}] - (d+1)(\mathbb{E}[V] \otimes I + I \otimes \mathbb{E}[V]) + I \otimes I$$

$$= (d+1)^2 \mathbb{E}[V^{\otimes 2}] - I \otimes I - \rho \otimes I - I \otimes \rho$$

$$\mathbb{E}[V \otimes V] = d \int \mathbf{v} \mathbf{v}^{\dagger} \otimes \mathbf{v} \mathbf{v}^{\dagger} \mathrm{Tr}(\rho \mathbf{v} \mathbf{v}^{\dagger}) \, \mathrm{d}\mu(\mathbf{v})$$

$$\mathbb{E}[V \otimes V] = d \int \mathbf{v} \mathbf{v}^{\dagger} \otimes \mathbf{v} \mathbf{v}^{\dagger} \operatorname{Tr}(\rho \mathbf{v} \mathbf{v}^{\dagger}) \, d\mu(\mathbf{v}) = \frac{(I \otimes I + I \otimes \rho + \rho \otimes I)(I \otimes I + \operatorname{SWAP})}{(d+1)(d+2)}$$

Recall:
$$\hat{\rho} = (d+1)\mathbf{v}\mathbf{v}^{\dagger} - I$$

ightharpoonup V is random variable that is ${f v}{f v}^\dagger$ with probability $d{
m Tr}({f v}{f v}^\dagger
ho)~{
m d}\mu({f v})$

$$\mathbb{E}[\hat{\rho} \otimes \hat{\rho}] = (d+1)^2 \mathbb{E}[V^{\otimes 2}] - (d+1)(\mathbb{E}[V] \otimes I + I \otimes \mathbb{E}[V]) + I \otimes I$$

$$= (d+1)^2 \mathbb{E}[V^{\otimes 2}] - I \otimes I - \rho \otimes I - I \otimes \rho$$

$$= (I \otimes I + \rho \otimes I + I \otimes \rho) \left(\frac{d+1}{d+2} \operatorname{SWAP} - \frac{1}{d+2} I \otimes I\right)$$

$$\approx (I \otimes I + \rho \otimes I + I \otimes \rho) \operatorname{SWAP}$$

$$\mathbb{E}[\text{Tr}(H\hat{\rho}_i\hat{\rho}_j)\text{Tr}(H\hat{\rho}_j\hat{\rho}_i)]$$

$$\mathbb{E}[\mathrm{Tr}(H\hat{\rho}_i\hat{\rho}_j)\mathrm{Tr}(H\hat{\rho}_j\hat{\rho}_i)]$$

$$\mathbb{E}[\mathrm{Tr}(H\hat{\rho}_i\hat{\rho}_j)\mathrm{Tr}(H\hat{\rho}_j\hat{\rho}_i)]$$

 $\mathbb{E}[\mathrm{Tr}(H\hat{\rho}_i\hat{\rho}_j)\mathrm{Tr}(H\hat{\rho}_j\hat{\rho}_i)]$

Computing the variance term by term

Estimator:

$$\hat{\rho}_{\text{pairs}} = \frac{1}{n(n-1)} \sum_{i \neq j} \hat{\rho}_i \hat{\rho}_j$$

$$\longrightarrow \text{Var}[\text{Tr}(H\hat{\rho}_{\text{pairs}})] = \frac{1}{n^2(n-1)^2} \sum_{i \neq j} \sum_{k \neq \ell} \text{Cov}(\text{Tr}(H\hat{\rho}_i\hat{\rho}_j), \text{Tr}(H\hat{\rho}_k\hat{\rho}_\ell))$$

Case Analysis:

Both indices match ($|\{i,j\} \cap \{k,\ell'\}| = 2$):

$$Cov(Tr(H\hat{\rho}_i\hat{\rho}_j), Tr(H\hat{\rho}_i\hat{\rho}_j)) = O(d||H||_F^2)$$

→ Var[Tr(
$$H\hat{\rho}_{pairs}$$
)] = $O(d||H||_F^2/n^2 + 1/n)$

Open questions

1) What's the right answer for the independent measurement setting?

2) Can we get a smooth scaling with the rank of the state?

3) What happens when the unknown states are not identical?