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Classical shadows picture and review

010111100100101 f < Hermitian operator H € C%*¢
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, Estimate h such that
J T |h—Tr(Hp)| <€

-

Question: How many copies of p needed to succeed w.h.p forany H € #Z?
-




Variants of classical shadows - Local Clifford

~

Question: How many copies of p needed to succeed w.h.p forany H € #Z?
—

~

Variant 1 (Local Clifford): Measure each qubit of p in a random Pauli basis.
—

> [Huang, Kueng, Preskill 2020]: If # = {k-local Hamiltonians}

Probability of success 0

€

|

Accuracy parameter €:
|h—Tr(Hp)| <€

4k '
Sample complexity: 0(_2 10g(51))



Variants of classical shadows - Global Clifford

~

—

-
Question: How many copies of p needed to succeed w.h.p forany H € #Z?

_J

~

—

-
Variant 2 (Global Clifford): Apply random Clifford unitary to p and measure in the
computational basis.

_J

. [Huang, Kueng, Preskill 2020]: || %||% = max||H||% = max Tr(H?)
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Observation: If #Z has observables with operator norm 1, then || #Z H% = d.




Variants of classical shadows - Global Clifford

~
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Question: How many copies of p needed to succeed w.h.p forany H € #Z?

~
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Variant 2 (Global Clifford): Apply random Clifford unitary to p and measure in the

computational basis.

_J

. [Huang, Kueng, Preskill 2020]: || %||% = max||H||% = max Tr(H?)
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Observation: If #Z has observables with operator norm 1, then || #Z H% = d.
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Variants of classical shadows - Joint measurement

—
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~

Question: How many copies of p needed to succeed w.h.p forany H € #Z?

_J

-

.

-
Variant 3 (Joint measurement): Get all copies of p at once (i.e., p®”) and can
make an arbitrary measurement across all copies.

- |G, Pashayan, Schaeffer|: Assuming p Is pure
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Sample complexity: 0((
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Theorem: In constant 0 regime, this is tight (up to a log factor).
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Compression vs. classical shadows for pure states

~

\—

Classical Shadows:

How many copies of w € C% do
we need to measure to estimate
the expected value of an unknown
observable with high probability?

~

-
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Theorem:

O

sample are sufficient

~\

-

Compression: Given an explicit

description of w € C“ as a list of
amplitudes, how many bits do we
need to write down to estimate an
unknown observable?

r

-

Theorem |Gosset, Smolin 2018]:

()

bits are sufficient and necessary

.

r

\

Intuition: Measurements are giving the maximum possible information
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Revisiting Variant 2 (Global Clifford) with pure states

-
Variant 2 (Independent measurement): Can only measure a single copy of p at
once, but can apply arbitrary measurement.

-

~

—

Question: What happens when p is pure?

> Can still use Huang-Kueng-Preskill algorithm: O(H%Hl%/ez)

> But their lower bound uses high rank states...

. VadlZr 1
Sample complexity [G, Pashayan, Schaeffer]: 0, + —
€ €

- 1f || #|| > = d'° and € = d™%°, this is better than HKP bound



Outline for rest of talk

r

€2

. VdIlZlp 1
Sample complexity |G, Pashayan, Schaeffer|: 0, - + —

Revisit the Huang-Kueng-Preskill algorithm
Define new estimator for the pure state case

Sketch analysis

Tensor networks

Representation theory



POVM that can be used for the Global Clifford analysis

~

HKP Global Clifford measurement: Apply random Clifford unitary to p and
measure in the computational basis.

—

> We use a continuous POVM instead

dJVVT du(v) =1

Haar measure

(

These measurements turn out to be equally good in the independent
measurement setting

\_

~ But not the joint measurement setting! o {(vv)®" du(v) } o
A\



Overview Huang-Kueng-Preskill algorithm

3) Compute expectation

1) Choose measurement operators {d vv' d,u(v)}

“[pl=p =

- Repeat n times and average /),,, =

ﬁ1+la2+ +pn

ve(C<?

2) From measurement result, estimate state p = (d + 1)VV7L —

—[Tr(Hp)] = Tr(Hp)

4) Compute variance Var|Tr(Hp)| ~ HHH%

A\

n

5) Variance of average Var[Tr(Hp, )| ~ |[H H%/n

6) Chebyshev's inequality Pr||Tr(Hp,) — Tr(Hp)| = €] <

|H||7

ne?
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Overview of our proof strategy for pure states

1) Choose measurement operators {dVVT dﬂ(v)} cCd
\

2) From measurement result, estimate state ) = (d + 1)vv' — I

N |
» Repeatntimes p_ . ..—=———"— yil
L — 2 pib;

purity of p

l

3) Compute expectation “[pip;] = EIpIELD;] = pp = p

4) Compute variance Var[Tr(Hp ;)] = d||H |%/n* + 1/n
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Tensor networks

A =

Al,l A1,2
A2,1 A2,2

Ad,l Ad,2

Bl,d

b 2,d

b d,d

— {Bk,l}k,le[d]

>

]
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&
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Tensor Product:
(AQ B)i,k,j,l — Ai,jBk,l
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Tensor networks

A=

Al,l A1,2
A2,1 A2,2

Ad,l Ad,2

Bl,d

B, 4
T = Bt riera

b d,d

N
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Tensor Composition:
(AB);; = Z Aj B
k
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Tensor networks

A =

Al,l A1,2
A2,1 A2,2

Ad,l Ad,2

Bl,d

B, 4
T = Bt riera

b d,d

) k|
A B
\_/ ]
Self loops: j

y
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Tensor networks
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Tensor networks

SWAP

SWAP
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Tensor networks
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Tensor networks
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Tensor networks

AB
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Review of strategy

Measurement operators

Estimate of state

{d vv! d,u(v)}

ve(Cd

p=(d+ 1w —1

~

\—

Goal: Show E[p] = p.

>

“[pl =(d+ DE[V] -1

-V is random variable that is vv' with probability dTr(vv'p) du(v)
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Computing the expectation

- V] = dJ'VVTT r(vv'p) du(v)

2

I,

VVWL VVT
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Computing the expectation

- V] = dJ'VVTT r(vv'p) du(v)

-

Schur’s Lemma: This quantity is
proportional to the sum over all
permutations across the indices

p /‘

& |
J VVWL
\_ I

d(d+ 1)

SWAP 1
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Computing the expectation

- V] = dJ'VVTT r(vv'p) du(v)

7

I,

SWAP term

N

|dentity term
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Computing the expectation

-V = dJ'VVTTI‘(VVTp) du(v) =d

7

I,

SWAP term

p+1

7

P

dd+1)

N

ldentity term

p+1

d+ 1

-

~

Estimator:

p=Wd+1)V-1

— p+TI'(,0)I = p + ]
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Overview of our proof strategy for pure states

1) Choose measurement operators {dVVT dﬂ(v)} cCd
\

2) From measurement result, estimate state ) = (d + 1)vv' — I

o |
- Repeat ntimes ... —-——-—— 0.0
P Ppairs n(n— 1) & PiP;

1 7]

3) Compute expectation “[pip;] = EIpIELD;] = pp = p

-------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------
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Computing the variance term by term

~

R 1 . A
Estimator: Ppairs = m - PiPj
L I#]
) 1 . .
- Var[Tr(Hp )] = ——— Y, ), Cov(Tr(Hp ). Tr(Hpp )
(A evelwy

Case Analysis:
ujinikty =0 = Tr(Hp;p;) and Tr(Hp,p,) are independent
— Cov(Tr(Hpp), Te(Hpp,)) = O
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Computing the variance term by term

: 1
Estimator: )i = ————— ) DD
ppan‘s n(n—l) . .plp]
L I#]
1 . .
- Var[Tr(Hp )] = ——— Y, ), Cov(Tr(Hp ). Tr(Hpp )
n<(n — 1)~ %=
1#] kFC
Case Analysis:
One index matches (| {i,7} N {k,C} | = 1): O(1)
Both indices match (| {i,7} N {k,C} | = 2): O(dHHH%)

- Var[Tr(Hp, i) = O(d||H||#/n* + 1/n)
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Isolating large covariance term

~

.

Big covariance term: Cov(Tr(Hp,p;), Tr(Hpp;))

‘[Tf(Hﬁiﬁj)Tl’(Hﬁiﬁj)] — _[Tr(Hﬁilaj)] =lb (Hlaiﬁj)]

7\
- [Tr(Hﬁiﬁj)Tr(Hﬁiﬁj)] /\ (\ /\ /\

<
H||H
— E[Tr(Hp,p) Te(Hp ) q]|H — |
. " Pj P;
p I p ] — R R
% l 1% l
\/P] p; O
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Isolating large covariance term

~

.

Big covariance term: Cov(Tr(Hp,p;), Tr(Hpp;))

‘[Tf(Hﬁiﬁj)Tl’(Hﬁiﬁj)] — _[Tr(Hﬁilaj)] =lb (Hlaiﬁj)]

<
H| | H
= E[Te(Hpp)Tr(Hp;p) ] 1
— Pi| P
Pil 1P| = | 1T
Pi| | Pi

7\
- [Tr(Hﬁiﬁj)Tr(Hﬁiﬁj)] /\ (\ /\ /\
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Covariance is broken into two expectations

—[Tr(Hp,p j)Tr (Hp jﬁ )]
2 VYA WA
H H
|
ﬁ] ﬁj
Pil | P
M




Covariance is broken into two expectations

- Tr(Hpp j)Tr (Hp jﬁ )]
2 VYA WA
H| | H
e e |
= Pj P; -[pj®pj]
\_ | —/
N N 7
[ﬁi®ﬁi] = P; Pij
U




Second moment calculation

~

\—

Recall: p = (d+ 1)vv' —1

>

[p®pl=(d+ 1)

(VO] — (d + 1)(

-V is random variable that is vv' with probability dTr(vv'p) du(v)

—[V]®I+I®[—[1V]])+I®I

p+1

ﬁ/ d+ 1
\_
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Second moment calculation

~

\—

Recall: p = (d+ 1)vv' —1

>

[p®pl=(d+ 1)

= (d + 1)°

S[VO4] — (d + 1)(

VIQI+1Q

(V- IQI-pQI-IQp

-V is random variable that is vv' with probability dTr(vv'p) du(v)

(VD +1®1
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Second moment calculation

~

\—

Recall: p = (d+ 1)vv' —1

>

[p®pl=(d+ 1)

(VO] — (d + 1)(

VIQI+1Q

= (d+ DEVS]-I1QI-p®I-1®p

-V is random variable that is vv' with probability dTr(vv'p) du(v)

(VD +1®1
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Second moment calculation

-[VQ V] = dJVVT ® vV Tr(pvv") du(v)

27



Second moment calculation

URI+IRQp+p R KT+ SWAP)
(d+ 1)(d+ 2)

[V V] =d J'VVT ® vV Tr(pvv") du(v) =

.
Schur’s Lemma:

N
fellla
I,
T . i B
\_ I | | Yy L )
1

> Prefactor:

dld+ 1)(d+2)



Second moment calculation

-

\—

Recall: p = (d+ 1)vv' —1

>

[p®pl=(d+ 1)

= (d+ 1)°

d + 1
= ([ R I+ I+1 SWAP — IR
URI+p® ®P)<7_I_{ /74_42@) )

S[VO4] — (d + 1)(

VIQI+1Q

[V -IQI-p®I-IQp

1

~(IQI+pQI+1Q p)SWAP

-V is random variable that is vv' with probability dTr(vv'p) du(v)

(VD +1®1

0
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Covariance is broken into two expectations

=[Tr(Hp;p;) Tr(Hp;p;)]

ANAwe
H||H

E|p;i| |p;||[U®1}r@I+1®p)SWAP

(RN pRI+1®p)SWAP|E| p; | | A;
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Covariance is broken into two expectations

=[Tr(Hp;p;) Tr(Hp;p;)]

ANAwwe
H||H

VY,
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Covariance is broken into two expectations

=[Tr(Hp;p;) Tr(Hp;p;)]

ANAwwe
H||H

YERY
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Covariance is broken into two expectations

=[Tr(Hp;p;) Tr(Hp;p;)]

ANAwwe
H||H

VY,

= Tr(H?)d
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Computing the variance term by term

-

VaN 1 VaN VaN

Estimator: ppairs — m - plp]
L I7]
A\ 1 Vo N Vo N /\ /\
- Var[Tr(Hp i) ] = ———— ), Y, Cov(Tr(Hp,p,). Tr(Hpp )
n<(n — 1)~ 4=
1#] kFC

Case Analysis:

Both indices match (| {i,7} N {k,C} | = 2):
Cov(Tr(Hp:py). Ti(Hp:py) = O HII)

- Var[Tr(Hp ;)] = O(d||H H%/n2+ 1/n)
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Open gquestions

1) What'’s the right answer for the independent measurement setting?

2) Can we get a smooth scaling with the rank of the state”

3) What happens when the unknown states are not identical?
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