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What does quantum advantage even mean?

-
There is a problem that can be solved by a family of
quantum circuits that cannot be solved by a similar family
of classical circuits.

_

» “Problem”

Classical inputs, classical outputs
Doesn’t have to be useful

- Nice-to-have
Implementable in the near term
Verifiable in polynomial time
Requires zero conjectures



Complexity theoretic view of quantum advantage

-

—

Traditional Goal:
Find a problem in BOQP

that is notin P

~

—— Barrier: Hard to find
lower bounds for P

But what’s down here?

EXP

BQP

P

Classical exponential time

Quantum polynomial time

Classical polynomial time



Diagram of low-depth complexity classes

KHooray: Possible to prove h °
shallow classical circuits can’t
solve certain problems <C|iff0rd

\_ /

» Can we find shallow guantum
circuits to solve those problems? @

classical circuits

Constant-depth @



Example: Separating quantum from classical
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Constant-depth circuit separations

(

-

Theorem [Bravyi, Gosset, Konig 18]: Constant-depth quantum circuits can

solve a problem that cannot be solved by bounded fan-in constant-depth

circuits with AND, OR, and NOT gates.
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Constant-depth circuit separations

8 )
Theorem [Bene Watts, Kothari, Schaeffer, Tal 19]: Constant-depth quantum
circuits solve a problem that cannot be solved by unbounded fan-in constant-

. depth circuits with AND, OR, and NOT gates. )
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Most common types of problems

[ ) [ )
Sampling Relation
- y, " y,
Input: x € {0,1}" Input:  x € {0,1}"
Output: y~9, Output: y € Support(<,)
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Quantum circuits that depend on the input
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How do relation and sampling problems compare”?

~ R
Observation: Relation problems are “easier” than sampling problems
9 y
» Every circuit to sample immediately solves the corresponding relation problem
~ R
Theorem: Relation = Sampling for constant-depth Clifford circuits
9 y
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Distribution problems

a ) a )
Distribution Classical Distribution
\_ _J \_ J
Input: 1" for some n € N
Output: y~9, } é) ~
1 & H D
_ I, \
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| — — | X x
Independent random bits with bias p
4 )

Question: Can we obtain quantum advantage for a distribution problem?
- ,




Prior work on distributional separations

—

\—

Theorem [Parham, Bene Watts 23]: distQNCO ¢ distNC"

_J

- Caveat 2. Requires a more-or-less arbitrary guantum gate set

- Caveat 1: classical circuit needs ©O(n) bound on the number of ancillas

~

\—

Theorem [Viola 23, KOW 24]: distQNC" ¢ distNC"

~ Hard Distribution: The (1/3)-biased distribution

» Gaveat: only hard if your classical circuit doesn’t get biased coins
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Main theorem

~

—

Theorem [GKMOW 25]: distQNC" ¢ distNC”  (but hopefully better)

~

_

~ Discrete gate set: Hadamard, controlled-Phase, Toffoli

r

\.

Implication: Single-qubit marginals are sampleable with NC? circuits

" Geometrically local

r

.

Implication: Could implement the quantum circuit on current hardware

" Negligible overlap: 1 — ¢

A(n)

r

\.

Implication: Parallel repetition works as you expect
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Theorem ingredients

—

\—

Lower bound: Find distribution that cannot be sampled In NCY

—

\—

Upper bound: Show that distribution can be sampled in QNCO

07) + [17)

V2

I

<

- Simplification for this talk: Allow certain “quantum advice” states

Theorem: distQNC"/ #¢ ¢ distNC"

A 4] [ [ [
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Creating hard distributions in

shallow quantum depth




Why are distributional separations hard to prove?

s

Reasonable idea: Start with a function f: {0,1}" — {0,1} which
is hard to compute, and consider the distribution of pairs (x, f(x))
where x is a uniformly random string.

-

- Quintessential hard function: Parity(x) = x, ® x, @ - @ x,

s

Theorem: Parity & AC"

—

» More than we need!
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Quantum circuits can sample from even parity strings
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T

Think of y5 as the parity
of the other bits

Takeaway: QNCO/ W™ circuit to prepare

1 .
Z | x, Parity(x)).

2" 0.1}
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Hard function problem # Hard distribution problem

r

Fact: The (x, Parity(x)) distribution is sampleable in NC'.
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What went wrong?

Key fact: Flipping a bit in the (x, Parity(x)) distribution didn’t
change the distribution

-

» Follows from the fact that x is uniform

s

Modified reasonable idea: Consider the distribution of pairs

(x, Parity(x)) where x is random but not uniform.

-

- For example... x; is drawn from the (1/4)-biased distribution

- NC circuits can’t sample from this distribution!

- But neither can QNCO circuits... (1)

19



Parity-Halving to the rescue

-

Parity-Halving Problem [WKST 18]:

Input: x € {0,1}" such that Parity(x) = 0
O if [x] =0 (mod 4)

Output: 0,1}" h that Parit =
utput: y € {0,1}™ such that Parity(y) {1 if |x|] =2 (mod 4)

_J

- Specially designed to be solved by low-depth quantum circuits!

~ The hardness for classical circuits depends on m
if m = Q(n?), then Parity-Halving is in NC°
if m = o(n?), then Parity-Halving is not in NCP (or even ACY

20



QNCO/ ¥ circuit for Parity-Halving Problem
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Putting it all together

r

Most reasonable modified idea: Consider the distribution of
pairs (x, ParityHalving(x)) where each bit of x is (1/4)-biased,

and ParityHalving(x) is uniform amongst valid solutions

- Are we done yet? Yes, but...
Recall: Parity(x) = O in the promise of the Parity-Halving problem

Solution: Just run the quantum circuit on those inputs too!

- Also need to be able to generate (1/4)-biased bits

Solution: Use Hadamard + Toffoli gates

22



Proving classical circuit lower

bounds




Independent output bits imply low correlation

~

Intuitive (oversimplified) idea: Parity is sensitive to all of the input
bits, so we shouldn’t be able to independently toggle inputs

—

X, . Formal: Consider the potential function

: _ clx[+2ly]

(X, ) — 1 Y
0 0 L pLx.y
0 0
0
NC .
Y2>P ty(y) O If |[x]| =0 (mod 4)
aril —

Y3 v 1 if |[x] =2 (mod 4)
Y4 T

y depends on all input bits
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Potential function under the Parity-Halving distribution

( )

Theorem: [E[@(x,y)] ~ 1/2 for the Parity-Halving problem

— _J

o |x] =0 (mod4) — |y|=0 (mod 2) — ¢px,y) =1

@// [ x| =2 (mod4) — [y|=1 (mod2) — ¢x,y) =1
">
j lx[+21y] = 2] = E [(-=DM] =0

Parity(x) = 1

Expectation follows since Pr[Parity(x) = 0] =~ Pr[Parity(x) = 1] ~ 1/2



Meanwhile...

oo 5=

H(x,y) = iy

l'xl +x2+2(y1 +y2+y3 +y4)

ix1+2(y1+y2) . ix2+2(y3+y4)

l'xl +2(y1 +y2) . ix2+2(y3 +y4)

—[¢(x, y) ‘ ] — —[l'x1+2()’1+Y2)] : —[ix2+2(Y3+Y4)]

e

These terms are each < 1
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Lightcones constrain correlations in classical circuits

~

Backwards lightcone: The set of inputs that affect an output

}

AN

}7) %

~

Key fact: Backwards lightcones in NC circuit are of size 20(depth)

27



Why can’t all my lightcones be huge”?

-

Forward lightcone: The set of outputs affected by an input

}

}
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Why can’t all my lightcones be huge”?
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Why can’t all my lightcones be huge”?
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Why can’t all my lightcones be huge”?
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Why can’t all my lightcones be huge”?
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Why can’t all my lightcones be huge”?

Average Input

most 2¢

—@
degree is — \
constant / %

——@

—

\—

Upshot: Conditioning on high-degree inputs, gives low degree everywhere

_

Degree of every
«— output bit Is at
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Why can’t all my lightcones be huge”?

l

|
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Why can’t all my lightcones be huge”?
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Why can’t all my lightcones be huge”?

_ 2
\v | 2%)01
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\_

Theorem KOW 24]: Exist conditionings to find many disjoint neighborhoods

_
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Open gquestions

—

\—

Question: Can you improve the sampling lower bound to AC

- Need a new candidate hard distribution

- Still open for QAC? circuits

Question: Can we get stronger separations for other sorts of problems?

_J

~ Theorem |G, Schaeffer]: Interactive sampling requires NC! circuits
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