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What does quantum advantage even mean?
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There is a problem that can be solved by a family of 
quantum circuits that cannot be solved by a similar family 
of classical circuits.

“Problem”
Classical inputs, classical outputs

Doesn’t have to be useful

Nice-to-have
Implementable in the near term

Verifiable in polynomial time

Requires zero conjectures



Complexity theoretic view of quantum advantage
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𝖯

𝖤𝖷𝖯

𝖡𝖰𝖯

⋮
But what’s down here?

Classical polynomial time

Quantum polynomial time

Classical exponential time
Traditional Goal:  
Find a problem in  
that is not in 

𝖡𝖰𝖯
𝖯

Barrier: Hard to find 
lower bounds for 𝖯



Diagram of low-depth complexity classes
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𝖢𝗅𝗂𝖿𝖿𝗈𝗋𝖽

𝖭𝖢1

𝖠𝖢1

𝖯

𝖭𝖢0

𝖠𝖢0

Hooray: Possible to prove 
shallow classical circuits can’t 
solve certain problems

Can we find shallow quantum 
circuits to solve those problems?

Constant-depth 
classical circuits



Example: Separating quantum from classical

5

constant depth

bounded 
fan-in 

𝖭𝖢
No large 
gates

0

Constant depth

constant depth

bounded 
fan-in 

𝖰𝖭𝖢0

Quantum



Constant-depth circuit separations
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Theorem [Bravyi, Gosset, König 18]:  Constant-depth quantum circuits can 
solve a problem that cannot be solved by bounded fan-in constant-depth 
circuits with AND, OR, and NOT gates.

𝖰𝖭𝖢0𝖭𝖢0

constant depth constant depth

bounded 
fan-in 

bounded 
fan-in 

⊉



Constant-depth circuit separations
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Theorem [Bene Watts, Kothari, Schaeffer, Tal 19]:  Constant-depth quantum 
circuits solve a problem that cannot be solved by unbounded fan-in constant-
depth circuits with AND, OR, and NOT gates.

constant depth constant depth

unbounded 
fan-in 

bounded 
fan-in 

𝖰𝖭𝖢0𝖠𝖢0

⊉



Most common types of problems
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Sampling

Input: 
Output: 

x ∈ {0,1}n

y ∼ 𝒟x

Qx|0n⟩

Relation

Input: 
Output: 

x ∈ {0,1}n

y ∈ Support(𝒟x)

Qx|0n⟩

[Arute, et al. Nature 2019]

Quantum supremacy using a programmable 
superconducting processor

[BGK. Science 2018]

Quantum advantage with shallow circuits



Quantum circuits that depend on the input
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H
H

H

S
H

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

x3

x2

x1

Qx

|0n⟩ Qx



How do relation and sampling problems compare?
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Observation:  Relation problems are “easier” than sampling problems

Every circuit to sample immediately solves the corresponding relation problem

Theorem:  Relation = Sampling for constant-depth Clifford circuits



Distribution problems
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Distribution

Input: 
Output: y ∼ 𝒟n

Qn|0n⟩

 for some 1n n ∈ ℕ

Question:  Can we obtain quantum advantage for a distribution problem?

$
$

$
$

$
$

Classical Distribution

Independent random bits with bias p



Prior work on distributional separations
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Theorem [Parham, Bene Watts 23]:  𝖽𝗂𝗌𝗍𝖰𝖭𝖢0 ⊈ 𝖽𝗂𝗌𝗍𝖭𝖢0

Caveat 1: classical circuit needs  bound on the number of ancillas𝒪(n)
Caveat 2: Requires a more-or-less arbitrary quantum gate set

Theorem [Viola 23, KOW 24]:  𝖽𝗂𝗌𝗍𝖰𝖭𝖢0 ⊈ 𝖽𝗂𝗌𝗍𝖭𝖢0

Hard Distribution: The (1/3)-biased distribution

Caveat: only hard if your classical circuit doesn’t get biased coins



Main theorem
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Theorem [GKMOW 25]:  𝖽𝗂𝗌𝗍𝖰𝖭𝖢0 ⊈ 𝖽𝗂𝗌𝗍𝖭𝖢0

Discrete gate set: Hadamard, controlled-Phase, Toffoli

Geometrically local

Negligible overlap: 1 − eΩ(n)

Implication: Single-qubit marginals are sampleable with  circuits𝖭𝖢0

(but hopefully better)

Implication: Could implement the quantum circuit on current hardware

Implication: Parallel repetition works as you expect



Theorem ingredients
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Lower bound: Find distribution that cannot be sampled in 𝖭𝖢0

Upper bound: Show that distribution can be sampled in 𝖰𝖭𝖢0

Simplification for this talk: Allow certain “quantum advice” states

Qn
|0n⟩ + |1n⟩

2
Theorem:    𝖽𝗂𝗌𝗍𝖰𝖭𝖢0/ ⊈ 𝖽𝗂𝗌𝗍𝖭𝖢0



Creating hard distributions in 
shallow quantum depth



Why are distributional separations hard to prove?
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Reasonable idea:  Start with a function  which 
is hard to compute, and consider the distribution of pairs  
where  is a uniformly random string.

f : {0,1}n → {0,1}
(x, f(x))

x

Quintessential hard function:  𝖯𝖺𝗋𝗂𝗍𝗒(x) = x1 ⊕ x2 ⊕ ⋯ ⊕ xn

Theorem:  𝖯𝖺𝗋𝗂𝗍𝗒 ∉ 𝖠𝖢0

More than we need!



Quantum circuits can sample from even parity strings
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H

|0n⟩ + |1n⟩
2

H

H

H

H

y1
y2
y3
y4
y5

        y1 ⊕ y2 ⊕ y3 ⊕ y4 ⊕ y5 = 0
        y1 ⊕ y2 ⊕ y3 ⊕ y4 = y5

Think of  as the parity 
of the other bits

y5

Takeaway:    circuit to prepare  .𝖰𝖭𝖢0/ 1
2n ∑

x∈{0,1}n

|x, 𝖯𝖺𝗋𝗂𝗍𝗒(x)⟩



Hard function problem  Hard distribution problem≠
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Fact:  The  distribution is sampleable in .(x, 𝖯𝖺𝗋𝗂𝗍𝗒(x)) 𝖭𝖢0

Parity of outputs is 0

x1

x2

x3

x4

x1 ⊕ x2

x2 ⊕ x3

x3 ⊕ x4

x4 ⊕ x1



What went wrong?
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Modified reasonable idea:  Consider the distribution of pairs 
 where  is random but not uniform.(x, 𝖯𝖺𝗋𝗂𝗍𝗒(x)) x

Follows from the fact that  is uniformx

Key fact: Flipping a bit in the  distribution didn’t 
change the distribution

(x, 𝖯𝖺𝗋𝗂𝗍𝗒(x))

For example…  is drawn from the -biased distributionxi (1/4)
 circuits can’t sample from this distribution!𝖭𝖢0

But neither can  circuits…𝖰𝖭𝖢0



Parity-Halving to the rescue
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Parity-Halving Problem [WKST 18]: 

Input:  such that 


Output:  such that 

x ∈ {0,1}n 𝖯𝖺𝗋𝗂𝗍𝗒(x) = 0
y ∈ {0,1}m 𝖯𝖺𝗋𝗂𝗍𝗒(y) = {0 if  |x | ≡ 0 (mod 4)

1 if  |x | ≡ 2 (mod 4)

Specially designed to be solved by low-depth quantum circuits!
The hardness for classical circuits depends on m

If , then Parity-Halving is in m = Ω(n2) 𝖭𝖢𝟢

If , then Parity-Halving is not in  (or even )m = o(n2) 𝖭𝖢𝟢 𝖠𝖢0



  circuit for Parity-Halving Problem𝖰𝖭𝖢0/
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x3

x2

x1

x4
S

S
S

S

|0n⟩ + |1n⟩
2

|0n⟩ + |1n⟩
2

|0n⟩ + i|x| |1n⟩
2

H
H
H
H

= |0n⟩ + (−1)|x|/2 |1n⟩
2

→

Recall:  

H⊗n | ⟩ = 1
2n−1 ∑

𝖯𝖺𝗋𝗂𝗍𝗒(x)=0
|x⟩

H⊗n |− ⟩ = 1
2n−1 ∑

𝖯𝖺𝗋𝗂𝗍𝗒(x)=1
|x⟩

{ | ⟩ if  |x | /2 ≡ 0 (mod 2)
| ⟩ if  |x | /2 ≡ 1 (mod 2)−

=



Putting it all together
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Most reasonable modified idea:  Consider the distribution of 
pairs  where each bit of  is -biased, 
and  is uniform amongst valid solutions

(x, 𝖯𝖺𝗋𝗂𝗍𝗒𝖧𝖺𝗅𝗏𝗂𝗇𝗀(x)) x (1/4)
𝖯𝖺𝗋𝗂𝗍𝗒𝖧𝖺𝗅𝗏𝗂𝗇𝗀(x)

Are we done yet? Yes, but…
Recall:     in the promise of the Parity-Halving problem𝖯𝖺𝗋𝗂𝗍𝗒(x) = 0
Solution: Just run the quantum circuit on those inputs too!

Also need to be able to generate -biased bits(1/4)
Solution: Use Hadamard + Toffoli gates



Proving classical circuit lower 
bounds



Independent output bits imply low correlation
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Intuitive (oversimplified) idea: Parity is sensitive to all of the input 
bits, so we shouldn’t be able to independently toggle inputs

𝖭𝖢0

x1

y1
y2

x2

y3
y4

 depends on all input bitsy

x1
x2

𝖯𝖺𝗋𝗂𝗍𝗒(y) = {0 if  |x | ≡ 0 (mod 4)
1 if  |x | ≡ 2 (mod 4)

0
0

0
0

$

$

$

Formal: Consider the potential function

ϕ(x, y) = i|x|+2|y|



Potential function under the Parity-Halving distribution
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Theorem:    for the Parity-Halving problem𝔼[ϕ(x, y)] ≈ 1/2

i|x|+2|y|

|x | ≡ 0 (mod 4)
|x | ≡ 2 (mod 4)

|y | ≡ 0 (mod 2) ϕ(x, y) = 1
|y | ≡ 1 (mod 2) ϕ(x, y) = 1

= 𝔼y[(−1)|y|]
𝖯𝖺𝗋𝗂𝗍𝗒(x) = 1

𝖯𝖺𝗋𝗂𝗍
𝗒(x

) = 0

𝔼y[i2y] = 0

Expectation follows since  Pr[𝖯𝖺𝗋𝗂𝗍𝗒(x) = 0] ≈ Pr[𝖯𝖺𝗋𝗂𝗍𝗒(x) = 1] ≈ 1/2



Meanwhile…
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𝖭𝖢0

x1

y1
y2

x2

y3
y4

x1
x2
0
0

0
0

$

$

$

ϕ(x, y) = i|x|+2|y|

= ix1+x2+2(y1+y2+y3+y4)

= ix1+2(y1+y2) ⋅ ix2+2(y3+y4)

= ix1+2(y1+y2) ⋅ ix2+2(y3+y4)

𝔼[ϕ(x, y) ∣ ] = 𝔼[ix1+2(y1+y2)] ⋅ 𝔼[ix2+2(y3+y4)]

These terms are each ≪ 1

$



Lightcones constrain correlations in classical circuits
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Backwards lightcone: The set of inputs that affect an output

Key fact: Backwards lightcones in  circuit are of size 𝖭𝖢0 2O(depth)



Why can’t all my lightcones be huge?
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Forward lightcone: The set of outputs affected by an input



Why can’t all my lightcones be huge?
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Why can’t all my lightcones be huge?
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Why can’t all my lightcones be huge?
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Why can’t all my lightcones be huge?
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Why can’t all my lightcones be huge?
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Degree of every 
output bit is at 
most 2d

Average input 
degree is 
constant

Upshot: Conditioning on high-degree inputs, gives low degree everywhere



Why can’t all my lightcones be huge?
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Why can’t all my lightcones be huge?
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Why can’t all my lightcones be huge?
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Theorem [KOW 24]: Exist conditionings to find many disjoint neighborhoods

22
2⋱
20d



Open questions
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Question: Can you improve the sampling lower bound to 𝖠𝖢0

Question: Can we get stronger separations for other sorts of problems?

Need a new candidate hard distribution
Still open for  circuits𝖰𝖠𝖢𝟢

Theorem [G, Schaeffer]: Interactive sampling requires  circuits𝖭𝖢1


